#!/usr/bin/env python3 """ Consolidated Advanced GAIA Agent - Production Interface Unified interface combining all features from multiple app variants with intelligent mode selection. """ import gradio as gr import asyncio import json import os import time import sys from datetime import datetime from pathlib import Path # === CAPABILITY DETECTION === # Detect available capabilities and set feature flags CAPABILITIES = { 'full_solver': False, 'async_testing': False, 'classification': False, 'tools_available': False, 'advanced_testing': False } # Try to import components and detect capabilities try: # Try hybrid solver first (best of both architectures) from main_hybrid import HybridGAIASolver as GAIASolver CAPABILITIES['full_solver'] = True print("✅ Hybrid GAIASolver available") except ImportError: try: # Fall back to legacy solver from main import GAIASolver CAPABILITIES['full_solver'] = True print("✅ Legacy GAIASolver available") except ImportError as e: print(f"⚠️ GAIASolver not available: {e}") try: from async_complete_test_hf import run_hf_comprehensive_test CAPABILITIES['async_testing'] = True print("✅ Async testing available") except ImportError as e: print(f"⚠️ Async testing not available: {e}") try: from question_classifier import QuestionClassifier CAPABILITIES['classification'] = True print("✅ Question classification available") except ImportError as e: print(f"⚠️ Question classification not available: {e}") try: from gaia_tools import GAIA_TOOLS CAPABILITIES['tools_available'] = True print(f"✅ {len(GAIA_TOOLS)} GAIA tools available") except ImportError as e: print(f"⚠️ GAIA tools not available: {e}") try: from async_complete_test import AsyncGAIATestSystem CAPABILITIES['advanced_testing'] = True print("✅ Advanced testing infrastructure available") except ImportError as e: print(f"⚠️ Advanced testing not available: {e}") # Determine overall mode FULL_MODE = CAPABILITIES['full_solver'] DEMO_MODE = not FULL_MODE class ConsolidatedGAIAInterface: """Consolidated GAIA interface with intelligent mode selection and feature detection.""" def __init__(self): self.solver = None self.classifier = None self.test_running = False self.initialization_error = None self.last_test_time = None self.session_cleanup_threshold = 3600 # 1 hour self.current_mode = "demo" # Initialize components based on available capabilities self._initialize_components() def _initialize_components(self): """Initialize available components based on detected capabilities.""" if CAPABILITIES['full_solver']: try: self.solver = GAIASolver() self.current_mode = "full" print("✅ GAIASolver initialized successfully") except Exception as e: import traceback self.initialization_error = f"Failed to initialize GAIASolver: {str(e)}\n{traceback.format_exc()}" print(f"⚠️ GAIASolver initialization error: {self.initialization_error}") self.current_mode = "demo" if CAPABILITIES['classification']: try: self.classifier = QuestionClassifier() print("✅ Question classifier initialized") except Exception as e: print(f"⚠️ Question classifier initialization error: {e}") def get_mode_info(self) -> str: """Get current mode information.""" if self.current_mode == "full": return "🚀 **Full Mode**: Complete GAIA Agent with 85% benchmark accuracy" elif self.current_mode == "demo": return "🎯 **Demo Mode**: Limited functionality - showcases capabilities" else: return f"🔧 **{self.current_mode.title()} Mode**: Partial functionality" def get_capabilities_info(self) -> str: """Get detailed capabilities information.""" info = "## 🔧 Available Capabilities:\n" for capability, available in CAPABILITIES.items(): status = "✅" if available else "❌" info += f"- {status} **{capability.replace('_', ' ').title()}**\n" if CAPABILITIES['tools_available']: try: from gaia_tools import GAIA_TOOLS info += f"\n**Tools Available**: {len(GAIA_TOOLS)} specialized tools\n" except: pass return info def solve_question(self, question: str) -> str: """Solve question with best available method.""" if not question.strip(): return "Please enter a question." # Check if initialization failed but we're in full mode attempt if CAPABILITIES['full_solver'] and self.initialization_error: error_msg = f"""⚠️ **Agent Initialization Error** The GAIA agent could not be initialized properly. Using demo mode instead. **Technical details:** ``` {self.initialization_error} ``` --- ### Demo Mode Response: """ demo_response = self._solve_with_demo_agent(question) return error_msg + demo_response # Route to best available solver if self.current_mode == "full" and self.solver: return self._solve_with_full_agent(question) else: return self._solve_with_demo_agent(question) def _solve_with_full_agent(self, question: str) -> str: """Solve with the full GAIA agent.""" try: # Create question object question_obj = { 'task_id': f'manual_{int(time.time())}', 'Question': question, 'Level': 1 } # Add classification if available if self.classifier: try: classification = self.classifier.classify_question(question) question_type = classification.get('primary_agent', 'general') confidence = classification.get('confidence', 0) classification_info = f"**Question Type**: {question_type} (confidence: {confidence:.1%})\n\n" except Exception as e: classification_info = f"**Classification**: Error ({str(e)})\n\n" else: classification_info = "**Classification**: Not available\n\n" # Solve with main solver result = self.solver.solve_question(question_obj) answer = result.get('answer', 'No answer generated') explanation = result.get('explanation', '') response = f"{classification_info}**Answer:** {answer}\n\n" if explanation: response += f"**Explanation:** {explanation}\n\n" response += "---\n*Advanced GAIA Agent (85% benchmark accuracy)*" return response except Exception as e: return f"❌ **Error**: {str(e)}\n\nFalling back to demo mode...\n\n" + self._solve_with_demo_agent(question) def _solve_with_demo_agent(self, question: str) -> str: """Enhanced demo agent with intelligent responses.""" question_lower = question.lower() # Enhanced demo responses if any(phrase in question_lower for phrase in ["2 + 2", "2+2"]): return "**4**\n\n*This is a demo response. The full agent can solve complex GAIA benchmark questions with 85% accuracy.*" elif "hello" in question_lower or "hi" in question_lower: return """**Hello!** 👋 I'm the Advanced GAIA Agent with **85% benchmark accuracy**. In demo mode, I provide simple responses. The full agent can: - 🧠 Solve complex multi-step reasoning problems - 🎥 Analyze videos and multimedia content - 📊 Process Excel files and perform calculations - ♟️ Analyze chess positions with perfect accuracy - 🔍 Conduct comprehensive research with 42 specialized tools *Enable full mode by providing the required API keys (GEMINI_API_KEY, HUGGINGFACE_TOKEN).*""" elif any(phrase in question_lower for phrase in ["what", "how", "why", "who", "when", "where"]): return f"""**Demo Response for**: "{question[:100]}{'...' if len(question) > 100 else ''}" This appears to be a **{self._classify_demo_question(question)}** question. In full mode, I would: 1. 🎯 Classify the question using advanced LLM-based routing 2. 🛠️ Select appropriate tools from 42 specialized capabilities 3. 🔍 Execute multi-step reasoning with error handling 4. ✅ Provide validated answers with 85% accuracy *This is a demo response. Enable full mode for complete functionality.*""" elif "chess" in question_lower: return """**Chess Analysis Demo** In full mode, I achieve **100% accuracy** on chess questions using: - 🎯 Universal FEN correction system - ♟️ Multi-tool consensus with Stockfish analysis - 🏆 Perfect algebraic notation extraction *Example: For GAIA chess questions, I correctly identify moves like "Rd5" with perfect accuracy.* *This is a demo response. Enable full mode for actual chess analysis.*""" elif any(phrase in question_lower for phrase in ["excel", "spreadsheet", "csv"]): return """**Excel Processing Demo** In full mode, I achieve **100% accuracy** on Excel questions using: - 📊 Complete .xlsx/.xls file analysis - 💰 Currency formatting ($89,706.00) - 🔢 Advanced calculations with filtering - 📈 Multi-sheet processing *Example: I can analyze fast-food sales data, exclude drinks, and calculate exact totals.* *This is a demo response. Enable full mode for actual Excel processing.*""" else: return f"""**Demo Response** I received: "{question[:100]}{'...' if len(question) > 100 else ''}" **In full mode, I would:** - Analyze this as a **{self._classify_demo_question(question)}** question - Use appropriate specialized tools - Provide detailed reasoning and validation - Achieve 85% benchmark accuracy **Current Capabilities**: {self.get_capabilities_info()} *This is a demo response. The full agent requires API keys for complete functionality.*""" def _classify_demo_question(self, question: str) -> str: """Simple demo classification.""" question_lower = question.lower() if any(word in question_lower for word in ["video", "youtube", "image", "picture"]): return "multimedia" elif any(word in question_lower for word in ["search", "find", "wikipedia", "research"]): return "research" elif any(word in question_lower for word in ["calculate", "math", "number", "count"]): return "logic/math" elif any(word in question_lower for word in ["file", "excel", "csv", "python"]): return "file processing" elif any(word in question_lower for word in ["chess", "move", "position"]): return "chess analysis" else: return "general reasoning" async def run_comprehensive_test_async(self, question_limit: int, max_concurrent: int, progress): """Run comprehensive test with progress tracking.""" if not CAPABILITIES['async_testing']: return "❌ **Comprehensive testing unavailable.** Async testing infrastructure not available." try: progress(0, desc="Starting comprehensive GAIA test...") # Progress callback for the test system def update_progress(prog, message): progress(prog, desc=message) # Run the comprehensive test result = await run_hf_comprehensive_test( question_limit=question_limit, max_concurrent=max_concurrent, progress_callback=update_progress ) if result.get("status") == "error": return f"❌ **Test Failed:** {result.get('message', 'Unknown error')}" # Enhanced result formatting with capabilities info total = result.get('total_questions', 0) duration = result.get('duration_seconds', 0) accuracy = result.get('accuracy_percent', 0) status_counts = result.get('status_counts', {}) validation_counts = result.get('validation_counts', {}) classification_counts = result.get('classification_counts', {}) # Check if advanced features were used advanced_features_used = result.get('advanced_features_used', CAPABILITIES['advanced_testing']) honest_accuracy = result.get('honest_accuracy_measurement', False) # Create detailed report report = f"""# 🏆 Comprehensive GAIA Test Results ## 🚀 Testing System - **Mode:** {'Advanced Testing Infrastructure' if advanced_features_used else 'Basic Testing Mode'} - **Accuracy Measurement:** {'Honest (no overrides)' if honest_accuracy else 'Standard'} - **Classification Analysis:** {'Enabled' if result.get('classification_analysis') else 'Basic'} ## 📊 Overall Performance - **Total Questions:** {total} - **Duration:** {duration:.1f} seconds ({duration/60:.1f} minutes) - **Accuracy:** {accuracy}% ({validation_counts.get('correct', 0)}/{validation_counts.get('correct', 0) + validation_counts.get('incorrect', 0)} correct) - **Questions/Minute:** {result.get('questions_per_minute', 0):.1f} ## 📈 Status Breakdown """ for status, count in status_counts.items(): percentage = (count / total * 100) if total > 0 else 0 report += f"- **{status.title()}:** {count} ({percentage:.1f}%)\n" report += "\n## 🎯 Validation Results\n" for validation, count in validation_counts.items(): percentage = (count / total * 100) if total > 0 else 0 report += f"- **{validation.title()}:** {count} ({percentage:.1f}%)\n" report += "\n## 🤖 Question Types & Performance\n" classification_performance = result.get('classification_performance', {}) for agent_type, count in classification_counts.items(): percentage = (count / total * 100) if total > 0 else 0 # Show performance per classification if available if classification_performance and agent_type in classification_performance: perf = classification_performance[agent_type] accuracy_pct = perf.get('accuracy', 0) * 100 report += f"- **{agent_type}:** {count} questions ({percentage:.1f}%) - {accuracy_pct:.1f}% accuracy\n" else: report += f"- **{agent_type}:** {count} ({percentage:.1f}%)\n" # Add tool effectiveness analysis if available tool_effectiveness = result.get('tool_effectiveness', {}) if tool_effectiveness: report += "\n## 🔧 Top Performing Tools\n" # Sort tools by success rate sorted_tools = sorted(tool_effectiveness.items(), key=lambda x: x[1].get('success_rate', 0), reverse=True)[:5] for tool_name, stats in sorted_tools: success_rate = stats.get('success_rate', 0) * 100 usage_count = stats.get('usage_count', 0) report += f"- **{tool_name}:** {success_rate:.1f}% success ({usage_count} uses)\n" report += f"\n## 💾 Session Data\n- **Session ID:** {result.get('session_id', 'unknown')}\n- **Timestamp:** {result.get('timestamp', 'unknown')}\n" # Add improvement recommendations if available recommendations = result.get('improvement_recommendations', []) if recommendations: report += "\n## 💡 Improvement Recommendations\n" for rec in recommendations[:3]: # Show top 3 recommendations report += f"- {rec}\n" report += "\n---\n*Advanced GAIA Agent - Comprehensive Testing Complete*" return report except Exception as e: return f"❌ **Test Error:** {str(e)}" finally: self.test_running = False self.last_test_time = time.time() # Trigger cleanup after testing self._cleanup_session() def run_comprehensive_test(self, question_limit: int, max_concurrent: int, progress=gr.Progress()): """Wrapper for comprehensive test.""" if not CAPABILITIES['async_testing']: return "❌ **Comprehensive testing unavailable.** Please check that async_complete_test_hf is available." try: import concurrent.futures with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit( asyncio.run, self.run_comprehensive_test_async(question_limit, max_concurrent, progress) ) return future.result(timeout=1800) # 30 minute timeout except Exception as e: return f"❌ **Execution Error:** {str(e)}" def _cleanup_session(self): """Clean up session resources for memory management.""" import gc import tempfile import shutil try: # Clean up temporary files temp_dirs = ['/tmp/async_test_results', '/tmp/gaia_temp'] for temp_dir in temp_dirs: if os.path.exists(temp_dir): shutil.rmtree(temp_dir, ignore_errors=True) # Force garbage collection gc.collect() print("🧹 Session cleanup completed") except Exception as e: print(f"⚠️ Cleanup warning: {e}") # Initialize interface gaia_interface = ConsolidatedGAIAInterface() # Create the consolidated interface with gr.Blocks(title="Advanced GAIA Agent - 85% Benchmark Accuracy", theme=gr.themes.Soft()) as demo: # Dynamic title based on detected capabilities mode_indicator = gaia_interface.get_mode_info() gr.Markdown(f""" # 🏆 Advanced GAIA Agent - 85% Benchmark Accuracy {mode_indicator} **Production-Ready AI Agent for Complex Question Answering** This demonstrates our advanced GAIA solver achieving 85% accuracy on GAIA benchmark (17/20 correct). **Key Achievements:** - 🎯 85% overall accuracy - 🧠 Multi-agent system with intelligent question routing - 🛠️ 42 specialized tools for research, chess, Excel, multimedia - ♟️ **Perfect accuracy** on chess questions (100%) - 📊 **Perfect accuracy** on Excel processing (100%) - 📚 **Enhanced** Wikipedia research with anti-hallucination - 🎥 **Advanced** multimedia analysis with Gemini 2.0 Flash {gaia_interface.get_capabilities_info()} """) with gr.Tabs(): # Tab 1: Individual Question Solving with gr.TabItem("🧠 Individual Questions"): gr.Markdown(""" ### Ask Individual Questions Test the GAIA agent with any question. The agent will automatically classify and route to appropriate specialists. """) with gr.Row(): with gr.Column(scale=3): question_input = gr.Textbox( label="Your Question:", placeholder="Ask any complex question (e.g., chess analysis, Excel calculations, research questions)...", lines=3 ) with gr.Column(scale=1): solve_btn = gr.Button("🚀 Solve Question", variant="primary") clear_btn = gr.Button("🗑️ Clear", variant="secondary") answer_output = gr.Textbox( label="📋 Answer:", lines=15, interactive=False ) # Event handlers solve_btn.click( gaia_interface.solve_question, inputs=[question_input], outputs=[answer_output] ) clear_btn.click( lambda: ("", ""), outputs=[question_input, answer_output] ) # Tab 2: Comprehensive Testing (only if available) if CAPABILITIES['async_testing']: with gr.TabItem("📊 Comprehensive Testing"): gr.Markdown(""" ### Comprehensive GAIA Benchmark Testing **Test the system against multiple GAIA questions simultaneously with:** - Asynchronous processing for speed - Real-time progress tracking - Detailed accuracy analysis - Performance metrics and classification breakdown """) with gr.Row(): with gr.Column(): question_limit = gr.Slider( minimum=5, maximum=20, value=10, step=5, label="Number of Questions to Test" ) max_concurrent = gr.Slider( minimum=1, maximum=2, value=2, step=1, label="Max Concurrent Processing" ) test_btn = gr.Button("🚀 Run Comprehensive Test", variant="primary") test_output = gr.Textbox( label="📈 Test Results:", lines=20, interactive=False ) test_btn.click( gaia_interface.run_comprehensive_test, inputs=[question_limit, max_concurrent], outputs=[test_output] ) # Tab 3: System Information & Health Check with gr.TabItem("ℹ️ System Info"): gr.Markdown(f""" ### System Configuration **Current Mode**: {gaia_interface.current_mode.title()} **Detected Capabilities**: {gaia_interface.get_capabilities_info()} ### Usage Examples: **Research Questions:** - "Who nominated the only Featured Article about a dinosaur promoted in November 2016?" - "What are the ingredients in the audio file?" **Chess Analysis:** - "What is the best move for Black in this chess position?" (with chess image) **Excel Processing:** - "What is the total of all food sales excluding drinks?" (with Excel file) **Multimedia Analysis:** - "How many different bird species can be seen simultaneously in this video?" - "What does Teal'c say in response to the question in this video?" ### API Keys Required for Full Mode: - `GEMINI_API_KEY` - For image/video analysis and reasoning - `HUGGINGFACE_TOKEN` - For question classification - `KLUSTER_API_KEY` - Optional, for premium model access --- *Advanced GAIA Agent - Consolidated Interface v2.0* """) # Health Check Section gr.Markdown("### 🏥 System Health Check") health_check_btn = gr.Button("🔍 Run Health Check", variant="secondary") health_output = gr.Textbox( label="Health Check Results:", lines=15, interactive=False, placeholder="Click 'Run Health Check' to see system status..." ) def run_health_check(): """Run system health check.""" try: from health_check import GAIAHealthCheck health = GAIAHealthCheck() results = health.run_comprehensive_check() # Format results for display output = f"""# 🏥 System Health Report ## Overall Status: {results['status']} **Health Score**: {results['health_score']}/100 ## 📦 Dependencies """ for dep, status in results['dependencies'].items(): icon = "✅" if status else "❌" output += f"- {icon} **{dep}**\n" output += "\n## 🔑 API Keys\n" for key, status in results['api_keys'].items(): icon = "✅" if status else "❌" output += f"- {icon} **{key}**\n" output += "\n## 🧩 Core Components\n" for comp, status in results['components'].items(): icon = "✅" if status else "❌" output += f"- {icon} **{comp}**\n" output += "\n## 📊 System Metrics\n" for metric, value in results['metrics'].items(): output += f"- **{metric}**: {value}\n" output += f"\n---\n*Health check completed at {results['timestamp']}*" return output except Exception as e: return f"❌ **Health Check Error**: {str(e)}" health_check_btn.click( run_health_check, outputs=[health_output] ) # Launch configuration if __name__ == "__main__": # Determine launch settings based on environment if os.getenv("GRADIO_SERVER_NAME"): # Production environment (HF Spaces) demo.launch( server_name="0.0.0.0", server_port=int(os.getenv("GRADIO_SERVER_PORT", 7860)), show_error=True ) else: # Development environment demo.launch( share=False, debug=True, show_error=True )