Spaces:
Running
Running
File size: 28,747 Bytes
c262d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
#!/usr/bin/env python3
"""
Enhanced GAIA Testing with Classification Filtering and Error Analysis
Test all questions by agent type with comprehensive error tracking and iterative improvement workflow.
"""
import json
import time
import argparse
import logging
import sys
from datetime import datetime
from typing import Dict, List, Optional
from collections import defaultdict
from pathlib import Path
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
from gaia_web_loader import GAIAQuestionLoaderWeb
from main import GAIASolver
from question_classifier import QuestionClassifier
class GAIAClassificationTester:
"""Enhanced GAIA testing with classification-based filtering and error analysis"""
def __init__(self):
self.loader = GAIAQuestionLoaderWeb()
self.classifier = QuestionClassifier()
self.solver = GAIASolver()
self.results = []
self.error_patterns = defaultdict(list)
# Create logs directory if it doesn't exist
Path("logs").mkdir(exist_ok=True)
# Setup logging
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
self.log_file = f"logs/classification_test_{timestamp}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(self.log_file),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
# Load validation answers after logger is set up
self.validation_answers = self.load_validation_answers()
def load_validation_answers(self):
"""Load correct answers from GAIA validation metadata"""
answers = {}
try:
validation_path = Path(__file__).parent.parent / 'gaia_validation_metadata.jsonl'
with open(validation_path, 'r') as f:
for line in f:
if line.strip():
data = json.loads(line.strip())
task_id = data.get('task_id')
final_answer = data.get('Final answer')
if task_id and final_answer:
answers[task_id] = final_answer
self.logger.info(f"π Loaded {len(answers)} validation answers")
except Exception as e:
self.logger.error(f"β οΈ Could not load validation data: {e}")
return answers
def validate_answer(self, task_id: str, our_answer: str):
"""Validate our answer against the correct answer with format normalization"""
if task_id not in self.validation_answers:
return {"status": "NO_VALIDATION", "expected": "N/A", "our": our_answer}
expected = str(self.validation_answers[task_id]).strip()
our_clean = str(our_answer).strip()
# Exact match (case-insensitive)
if our_clean.lower() == expected.lower():
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# ENHANCED: Format normalization for comprehensive comparison
def normalize_format(text):
"""Enhanced normalization for fair comparison"""
import re
text = str(text).lower().strip()
# Remove currency symbols and normalize numbers
text = re.sub(r'[$β¬Β£Β₯]', '', text)
# Normalize spacing around commas and punctuation
text = re.sub(r'\s*,\s*', ', ', text) # "b,e" -> "b, e"
text = re.sub(r'\s*;\s*', '; ', text) # "a;b" -> "a; b"
text = re.sub(r'\s*:\s*', ': ', text) # "a:b" -> "a: b"
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
# Normalize decimal places and numbers
text = re.sub(r'(\d+)\.0+$', r'\1', text) # "89706.00" -> "89706"
text = re.sub(r'(\d+),(\d{3})', r'\1\2', text) # "89,706" -> "89706"
# Remove common formatting artifacts
text = re.sub(r'["""''`]', '"', text) # Normalize quotes
text = re.sub(r'[ββ]', '-', text) # Normalize dashes
text = re.sub(r'[^\w\s,.-]', '', text) # Remove special characters
# Handle common answer formats
text = re.sub(r'^the answer is\s*', '', text)
text = re.sub(r'^answer:\s*', '', text)
text = re.sub(r'^final answer:\s*', '', text)
return text
normalized_expected = normalize_format(expected)
normalized_our = normalize_format(our_clean)
# Check normalized exact match
if normalized_our == normalized_expected:
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# For list-type answers, try element-wise comparison
if ',' in expected and ',' in our_clean:
expected_items = [item.strip().lower() for item in expected.split(',')]
our_items = [item.strip().lower() for item in our_clean.split(',')]
# Sort both lists for comparison (handles different ordering)
if sorted(expected_items) == sorted(our_items):
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# Check if most items match (partial credit)
matching_items = set(expected_items) & set(our_items)
if len(matching_items) >= len(expected_items) * 0.7: # 70% match threshold
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
# Check if our answer contains the expected answer (broader match)
if normalized_expected in normalized_our or normalized_our in normalized_expected:
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
# ENHANCED: Numeric equivalence checking
import re
expected_numbers = re.findall(r'\d+(?:\.\d+)?', expected)
our_numbers = re.findall(r'\d+(?:\.\d+)?', our_clean)
if expected_numbers and our_numbers:
try:
# Compare primary numbers
expected_num = float(expected_numbers[0])
our_num = float(our_numbers[0])
# Allow small floating point differences
if abs(expected_num - our_num) < 0.01:
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# Check for percentage differences (e.g., rounding errors)
if expected_num > 0:
percentage_diff = abs(expected_num - our_num) / expected_num
if percentage_diff < 0.01: # 1% tolerance
return {"status": "CORRECT", "expected": expected, "our": our_clean}
except (ValueError, IndexError):
pass
# ENHANCED: Fuzzy matching for near-correct answers
def fuzzy_similarity(str1, str2):
"""Calculate simple character-based similarity"""
if not str1 or not str2:
return 0.0
# Convert to character sets
chars1 = set(str1.lower())
chars2 = set(str2.lower())
# Calculate Jaccard similarity
intersection = len(chars1 & chars2)
union = len(chars1 | chars2)
return intersection / union if union > 0 else 0.0
# Check fuzzy similarity for near matches
similarity = fuzzy_similarity(normalized_expected, normalized_our)
if similarity > 0.8: # 80% character similarity
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
# Final check: word-level matching
expected_words = set(normalized_expected.split())
our_words = set(normalized_our.split())
if expected_words and our_words:
word_overlap = len(expected_words & our_words) / len(expected_words)
if word_overlap > 0.7: # 70% word overlap
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
return {"status": "INCORRECT", "expected": expected, "our": our_clean}
def classify_all_questions(self) -> Dict[str, List[Dict]]:
"""Classify all questions and group by agent type"""
self.logger.info("π§ Classifying all GAIA questions...")
questions_by_agent = defaultdict(list)
classification_stats = defaultdict(int)
for question_data in self.loader.questions:
task_id = question_data.get('task_id', 'unknown')
question_text = question_data.get('question', '')
file_name = question_data.get('file_name', '')
try:
classification = self.classifier.classify_question(question_text, file_name)
primary_agent = classification['primary_agent']
# Add classification to question data
question_data['classification'] = classification
question_data['routing'] = self.classifier.get_routing_recommendation(classification)
questions_by_agent[primary_agent].append(question_data)
classification_stats[primary_agent] += 1
self.logger.info(f" {task_id[:8]}... β {primary_agent} (confidence: {classification['confidence']:.3f})")
except Exception as e:
self.logger.error(f" β Classification failed for {task_id[:8]}...: {e}")
questions_by_agent['error'].append(question_data)
# Print classification summary
self.logger.info(f"\nπ CLASSIFICATION SUMMARY:")
total_questions = len(self.loader.questions)
for agent_type, count in sorted(classification_stats.items()):
percentage = (count / total_questions) * 100
self.logger.info(f" {agent_type}: {count} questions ({percentage:.1f}%)")
return dict(questions_by_agent)
def test_agent_type(self, agent_type: str, questions: List[Dict], test_all: bool = False) -> List[Dict]:
"""Test all questions for a specific agent type"""
if not questions:
self.logger.warning(f"No questions found for agent type: {agent_type}")
return []
self.logger.info(f"\nπ€ TESTING {agent_type.upper()} AGENT")
self.logger.info(f"=" * 60)
self.logger.info(f"Questions to test: {len(questions)}")
agent_results = []
success_count = 0
for i, question_data in enumerate(questions, 1):
task_id = question_data.get('task_id', 'unknown')
question_text = question_data.get('question', '')
file_name = question_data.get('file_name', '')
self.logger.info(f"\n[{i}/{len(questions)}] Testing {task_id[:8]}...")
self.logger.info(f"Question: {question_text[:100]}...")
if file_name:
self.logger.info(f"File: {file_name}")
try:
start_time = time.time()
answer = self.solver.solve_question(question_data)
solve_time = time.time() - start_time
# Validate answer against expected result
validation_result = self.validate_answer(task_id, answer)
# Log results with validation
self.logger.info(f"β
Answer: {answer[:100]}...")
self.logger.info(f"β±οΈ Time: {solve_time:.1f}s")
self.logger.info(f"π Expected: {validation_result['expected']}")
self.logger.info(f"π Validation: {validation_result['status']}")
if validation_result['status'] == 'CORRECT':
self.logger.info(f"β
PERFECT MATCH!")
actual_status = 'correct'
elif validation_result['status'] == 'PARTIAL':
self.logger.info(f"π‘ PARTIAL MATCH - contains correct answer")
actual_status = 'partial'
elif validation_result['status'] == 'INCORRECT':
self.logger.error(f"β INCORRECT - answers don't match")
actual_status = 'incorrect'
else:
self.logger.warning(f"β οΈ NO VALIDATION DATA")
actual_status = 'no_validation'
result = {
'question_id': task_id,
'question': question_text,
'file_name': file_name,
'agent_type': agent_type,
'classification': question_data.get('classification'),
'routing': question_data.get('routing'),
'answer': answer,
'solve_time': solve_time,
'status': 'completed',
'validation_status': validation_result['status'],
'expected_answer': validation_result['expected'],
'actual_status': actual_status,
'error_type': None,
'error_details': None
}
agent_results.append(result)
if actual_status == 'correct':
success_count += 1
except Exception as e:
solve_time = time.time() - start_time
error_type = self.categorize_error(str(e))
self.logger.error(f"β Error: {e}")
self.logger.error(f"Error Type: {error_type}")
result = {
'question_id': task_id,
'question': question_text,
'file_name': file_name,
'agent_type': agent_type,
'classification': question_data.get('classification'),
'routing': question_data.get('routing'),
'answer': f"Error: {str(e)}",
'solve_time': solve_time,
'status': 'error',
'error_type': error_type,
'error_details': str(e)
}
agent_results.append(result)
self.error_patterns[agent_type].append({
'question_id': task_id,
'error_type': error_type,
'error_details': str(e),
'question_preview': question_text[:100]
})
# Small delay to avoid overwhelming APIs
time.sleep(1)
# Agent type summary with accuracy metrics
error_count = len([r for r in agent_results if r['status'] == 'error'])
completed_count = len([r for r in agent_results if r['status'] == 'completed'])
correct_count = len([r for r in agent_results if r.get('actual_status') == 'correct'])
partial_count = len([r for r in agent_results if r.get('actual_status') == 'partial'])
incorrect_count = len([r for r in agent_results if r.get('actual_status') == 'incorrect'])
accuracy_rate = (correct_count / len(questions)) * 100 if questions else 0
completion_rate = (completed_count / len(questions)) * 100 if questions else 0
self.logger.info(f"\nπ {agent_type.upper()} AGENT RESULTS:")
self.logger.info(f" Completed: {completed_count}/{len(questions)} ({completion_rate:.1f}%)")
self.logger.info(f" β
Correct: {correct_count}/{len(questions)} ({accuracy_rate:.1f}%)")
self.logger.info(f" π‘ Partial: {partial_count}/{len(questions)}")
self.logger.info(f" β Incorrect: {incorrect_count}/{len(questions)}")
self.logger.info(f" π₯ Errors: {error_count}/{len(questions)}")
if agent_results:
completed_results = [r for r in agent_results if r['status'] == 'completed']
if completed_results:
avg_time = sum(r['solve_time'] for r in completed_results) / len(completed_results)
self.logger.info(f" β±οΈ Average Solve Time: {avg_time:.1f}s")
return agent_results
def categorize_error(self, error_message: str) -> str:
"""Categorize error types for analysis"""
error_message_lower = error_message.lower()
if '503' in error_message or 'service unavailable' in error_message_lower:
return 'API_OVERLOAD'
elif 'timeout' in error_message_lower or 'time out' in error_message_lower:
return 'TIMEOUT'
elif 'api' in error_message_lower and ('key' in error_message_lower or 'auth' in error_message_lower):
return 'AUTHENTICATION'
elif 'wikipedia' in error_message_lower or 'wiki' in error_message_lower:
return 'WIKIPEDIA_TOOL'
elif 'chess' in error_message_lower or 'fen' in error_message_lower:
return 'CHESS_TOOL'
elif 'excel' in error_message_lower or 'xlsx' in error_message_lower:
return 'EXCEL_TOOL'
elif 'video' in error_message_lower or 'youtube' in error_message_lower:
return 'VIDEO_TOOL'
elif 'gemini' in error_message_lower:
return 'GEMINI_API'
elif 'download' in error_message_lower or 'file' in error_message_lower:
return 'FILE_PROCESSING'
elif 'hallucination' in error_message_lower or 'fabricat' in error_message_lower:
return 'HALLUCINATION'
elif 'parsing' in error_message_lower or 'extract' in error_message_lower:
return 'PARSING_ERROR'
else:
return 'UNKNOWN'
def analyze_errors_by_agent(self):
"""Analyze error patterns by agent type"""
if not self.error_patterns:
self.logger.info("π No errors found across all agent types!")
return
self.logger.info(f"\nπ ERROR ANALYSIS BY AGENT TYPE")
self.logger.info("=" * 60)
for agent_type, errors in self.error_patterns.items():
if not errors:
continue
self.logger.info(f"\nπ¨ {agent_type.upper()} AGENT ERRORS ({len(errors)} total):")
# Group errors by type
error_type_counts = defaultdict(int)
for error in errors:
error_type_counts[error['error_type']] += 1
for error_type, count in sorted(error_type_counts.items(), key=lambda x: x[1], reverse=True):
percentage = (count / len(errors)) * 100
self.logger.info(f" {error_type}: {count} errors ({percentage:.1f}%)")
# Show specific examples
self.logger.info(f" Examples:")
for error in errors[:3]: # Show first 3 errors
self.logger.info(f" - {error['question_id'][:8]}...: {error['error_type']} - {error['question_preview']}...")
def generate_improvement_recommendations(self):
"""Generate specific recommendations for improving each agent type"""
self.logger.info(f"\nπ‘ IMPROVEMENT RECOMMENDATIONS")
self.logger.info("=" * 60)
all_results = [r for agent_results in self.results for r in agent_results]
# Calculate success rates by agent type
agent_stats = defaultdict(lambda: {'total': 0, 'success': 0, 'errors': []})
for result in all_results:
agent_type = result['agent_type']
agent_stats[agent_type]['total'] += 1
if result['status'] == 'completed':
agent_stats[agent_type]['success'] += 1
else:
agent_stats[agent_type]['errors'].append(result)
# Generate recommendations for each agent type
for agent_type, stats in agent_stats.items():
success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0
self.logger.info(f"\nπ― {agent_type.upper()} AGENT (Success Rate: {success_rate:.1f}%):")
if success_rate >= 90:
self.logger.info(f" β
Excellent performance! Minor optimizations only.")
elif success_rate >= 75:
self.logger.info(f" β οΈ Good performance with room for improvement.")
elif success_rate >= 50:
self.logger.info(f" π§ Moderate performance - needs attention.")
else:
self.logger.info(f" π¨ Poor performance - requires major improvements.")
# Analyze common error patterns for this agent
error_types = defaultdict(int)
for error in stats['errors']:
if error['error_type']:
error_types[error['error_type']] += 1
if error_types:
self.logger.info(f" Common Issues:")
for error_type, count in sorted(error_types.items(), key=lambda x: x[1], reverse=True):
self.logger.info(f" - {error_type}: {count} occurrences")
self.suggest_fix_for_error_type(error_type, agent_type)
def suggest_fix_for_error_type(self, error_type: str, agent_type: str):
"""Suggest specific fixes for common error types"""
suggestions = {
'API_OVERLOAD': "Implement exponential backoff and retry logic",
'TIMEOUT': "Increase timeout limits or optimize processing pipeline",
'AUTHENTICATION': "Check API keys and authentication configuration",
'WIKIPEDIA_TOOL': "Enhance Wikipedia search logic and error handling",
'CHESS_TOOL': "Improve FEN parsing and chess engine integration",
'EXCEL_TOOL': "Add better Excel format validation and error recovery",
'VIDEO_TOOL': "Implement fallback mechanisms for video processing",
'GEMINI_API': "Add Gemini API error handling and fallback models",
'FILE_PROCESSING': "Improve file download and validation logic",
'HALLUCINATION': "Strengthen anti-hallucination prompts and tool output validation",
'PARSING_ERROR': "Enhance output parsing logic and format validation"
}
suggestion = suggestions.get(error_type, "Investigate error cause and implement appropriate fix")
self.logger.info(f" β Fix: {suggestion}")
def save_comprehensive_results(self, questions_by_agent: Dict[str, List[Dict]]):
"""Save comprehensive test results with error analysis"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f"gaia_classification_test_results_{timestamp}.json"
# Flatten all results
all_results = []
for agent_results in self.results:
all_results.extend(agent_results)
# Create comprehensive results
comprehensive_results = {
'test_metadata': {
'timestamp': timestamp,
'total_questions': len(self.loader.questions),
'questions_by_agent': {agent: len(questions) for agent, questions in questions_by_agent.items()},
'log_file': self.log_file
},
'overall_stats': {
'total_questions': len(all_results),
'successful': len([r for r in all_results if r['status'] == 'completed']),
'errors': len([r for r in all_results if r['status'] == 'error']),
'success_rate': len([r for r in all_results if r['status'] == 'completed']) / len(all_results) * 100 if all_results else 0
},
'agent_performance': {},
'error_patterns': dict(self.error_patterns),
'detailed_results': all_results
}
# Calculate per-agent performance
agent_stats = defaultdict(lambda: {'total': 0, 'success': 0, 'avg_time': 0})
for result in all_results:
agent_type = result['agent_type']
agent_stats[agent_type]['total'] += 1
if result['status'] == 'completed':
agent_stats[agent_type]['success'] += 1
agent_stats[agent_type]['avg_time'] += result['solve_time']
for agent_type, stats in agent_stats.items():
success_rate = (stats['success'] / stats['total']) * 100 if stats['total'] > 0 else 0
avg_time = stats['avg_time'] / stats['success'] if stats['success'] > 0 else 0
comprehensive_results['agent_performance'][agent_type] = {
'total_questions': stats['total'],
'successful': stats['success'],
'success_rate': success_rate,
'average_solve_time': avg_time
}
# Save results
with open(results_file, 'w') as f:
json.dump(comprehensive_results, f, indent=2, ensure_ascii=False)
self.logger.info(f"\nπΎ Comprehensive results saved to: {results_file}")
return results_file
def run_classification_test(self, agent_types: Optional[List[str]] = None, test_all: bool = True):
"""Run the complete classification-based testing workflow"""
self.logger.info("π GAIA CLASSIFICATION-BASED TESTING")
self.logger.info("=" * 70)
self.logger.info(f"Log file: {self.log_file}")
# Step 1: Classify all questions
questions_by_agent = self.classify_all_questions()
# Step 2: Filter agent types to test
if agent_types:
agent_types_to_test = [agent for agent in agent_types if agent in questions_by_agent]
if not agent_types_to_test:
self.logger.error(f"No questions found for specified agent types: {agent_types}")
return
else:
agent_types_to_test = list(questions_by_agent.keys())
self.logger.info(f"\nTesting agent types: {agent_types_to_test}")
# Step 3: Test each agent type
for agent_type in agent_types_to_test:
if agent_type == 'error': # Skip classification errors for now
continue
questions = questions_by_agent[agent_type]
agent_results = self.test_agent_type(agent_type, questions, test_all)
self.results.append(agent_results)
# Step 4: Comprehensive analysis
self.analyze_errors_by_agent()
self.generate_improvement_recommendations()
# Step 5: Save results
results_file = self.save_comprehensive_results(questions_by_agent)
self.logger.info(f"\nβ
CLASSIFICATION TESTING COMPLETE!")
self.logger.info(f"π Results saved to: {results_file}")
self.logger.info(f"π Log file: {self.log_file}")
def main():
"""Main CLI interface for classification-based testing"""
parser = argparse.ArgumentParser(description="GAIA Classification-Based Testing with Error Analysis")
parser.add_argument(
'--agent-types',
nargs='+',
choices=['multimedia', 'research', 'logic_math', 'file_processing', 'general'],
help='Specific agent types to test (default: all)'
)
parser.add_argument(
'--failed-only',
action='store_true',
help='Test only questions that failed in previous runs'
)
parser.add_argument(
'--quick-test',
action='store_true',
help='Run a quick test with limited questions per agent type'
)
args = parser.parse_args()
# Initialize and run tester
tester = GAIAClassificationTester()
print("π― Starting GAIA Classification-Based Testing...")
if args.agent_types:
print(f"π Testing specific agent types: {args.agent_types}")
else:
print("π Testing all agent types")
tester.run_classification_test(
agent_types=args.agent_types,
test_all=not args.quick_test
)
if __name__ == "__main__":
main() |