Spaces:
Running
Running
File size: 14,186 Bytes
c262d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
#!/usr/bin/env python3
"""
Logged Clean Test - Test all questions with proper logging and no overrides
"""
import os
import sys
import json
import time
from pathlib import Path
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
# Local imports
from gaia_web_loader import GAIAQuestionLoaderWeb
from main import GAIASolver
from question_classifier import QuestionClassifier
from tests.test_logging_utils import test_logger
def load_validation_answers():
"""Load correct answers from GAIA validation metadata"""
answers = {}
try:
validation_path = Path(__file__).parent.parent / 'gaia_validation_metadata.jsonl'
with open(validation_path, 'r') as f:
for line in f:
if line.strip():
data = json.loads(line.strip())
task_id = data.get('task_id')
final_answer = data.get('Final answer')
if task_id and final_answer:
answers[task_id] = final_answer
except Exception as e:
print(f"β οΈ Could not load validation data: {e}")
return answers
def validate_answer(task_id: str, our_answer: str, validation_answers: dict):
"""Validate our answer against the correct answer"""
if task_id not in validation_answers:
return None
expected = str(validation_answers[task_id]).strip()
our_clean = str(our_answer).strip()
# Exact match
if our_clean.lower() == expected.lower():
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# Check if our answer contains the expected answer
if expected.lower() in our_clean.lower():
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
return {"status": "INCORRECT", "expected": expected, "our": our_clean}
def test_single_question(question_data, validation_answers, model="qwen3-235b"):
"""Test a single question without any overrides - WITH LOGGING"""
task_id = question_data.get('task_id', 'unknown')
# Use the same logging approach as test_specific_question.py
with test_logger("clean_batch_question", task_id):
try:
print(f"π§ͺ Testing question: {task_id}")
print("=" * 60)
# Initialize solver and classifier
print(f"π Initializing GAIA Solver with Kluster.ai {model}...")
solver = GAIASolver(use_kluster=True, kluster_model=model)
print("π§ Initializing Question Classifier...")
classifier = QuestionClassifier()
# Display question details
print(f"β
Found question!")
print(f"π Question: {question_data.get('question', 'N/A')}")
print(f"π·οΈ Level: {question_data.get('Level', 'Unknown')}")
print(f"π Has file: {'Yes' if question_data.get('file_name') else 'No'}")
if question_data.get('file_name'):
print(f"π File: {question_data.get('file_name')}")
# Classify the question
print(f"\nπ§ QUESTION CLASSIFICATION:")
print("-" * 40)
question_text = question_data.get('question', '')
file_name = question_data.get('file_name', '')
classification = classifier.classify_question(question_text, file_name)
print(f"π― Primary Agent: {classification['primary_agent']}")
if classification['secondary_agents']:
print(f"π€ Secondary Agents: {', '.join(classification['secondary_agents'])}")
print(f"π Complexity: {classification['complexity']}/5")
print(f"π² Confidence: {classification['confidence']:.3f}")
print(f"π§ Tools Needed: {', '.join(classification['tools_needed'][:3])}")
if len(classification['tools_needed']) > 3:
print(f" (+{len(classification['tools_needed'])-3} more tools)")
print(f"π Reasoning: {classification['reasoning']}")
# Solve the question (NO OVERRIDES - pure LLM reasoning)
print(f"\nπ€ Solving question...")
print(f"π― Question type: {classification['primary_agent']}")
print(f"π Processing... (NO OVERRIDES - Pure LLM + Tools)")
start_time = time.time()
answer = solver.solve_question(question_data)
end_time = time.time()
duration = end_time - start_time
print(f"β
Completed in {duration:.1f} seconds")
# Validate answer
print(f"\nπ ANSWER VALIDATION:")
print("-" * 40)
validation_result = validate_answer(task_id, answer, validation_answers)
if validation_result:
print(f"Expected Answer: {validation_result['expected']}")
print(f"Our Answer: {validation_result['our']}")
print(f"Status: {validation_result['status']}")
if validation_result['status'] == 'CORRECT':
print(f"β
PERFECT MATCH!")
elif validation_result['status'] == 'PARTIAL':
print(f"π‘ PARTIAL MATCH - contains correct answer")
else:
print(f"β INCORRECT - answers don't match")
else:
print(f"β οΈ No validation data available for question {task_id}")
print(f"\nπ FINAL RESULTS:")
print("=" * 60)
print(f"Task ID: {task_id}")
print(f"Question Type: {classification['primary_agent']}")
print(f"Classification Confidence: {classification['confidence']:.3f}")
print(f"Our Answer: {answer}")
if validation_result:
print(f"Expected Answer: {validation_result['expected']}")
print(f"Validation Status: {validation_result['status']}")
print(f"Duration: {duration:.1f}s")
print(f"π« NO OVERRIDES APPLIED - Pure LLM reasoning")
result = {
'task_id': task_id,
'question_type': classification['primary_agent'],
'complexity': classification['complexity'],
'confidence': classification['confidence'],
'our_answer': str(answer),
'expected_answer': validation_result['expected'] if validation_result else 'N/A',
'status': validation_result['status'] if validation_result else 'NO_VALIDATION',
'duration': duration,
'question_preview': question_data.get('question', '')[:50] + "..."
}
status_icon = "β
" if result['status'] == "CORRECT" else "π‘" if result['status'] == "PARTIAL" else "β"
print(f"\n{status_icon} FINAL STATUS: {result['status']}")
return result
except Exception as e:
print(f"β Error testing question: {e}")
import traceback
traceback.print_exc()
return {
'task_id': task_id,
'question_type': 'error',
'complexity': 0,
'confidence': 0.0,
'our_answer': '',
'expected_answer': validation_answers.get(task_id, 'N/A'),
'status': 'ERROR',
'duration': 0.0,
'error': str(e),
'question_preview': question_data.get('question', '')[:50] + "..."
}
def run_logged_clean_test():
"""Run logged clean test on all questions"""
print("π§ͺ LOGGED CLEAN TEST - NO OVERRIDES")
print("=" * 60)
print("π― Goal: Measure real accuracy with full logging")
print("π« No hardcoded answers or overrides")
print("π€ Pure LLM + Tools reasoning only")
print("π Full detailed logs will be created")
print()
# Load questions and validation data
print("π Loading GAIA questions...")
loader = GAIAQuestionLoaderWeb()
all_questions = loader.questions
validation_answers = load_validation_answers()
print(f"β
Loaded {len(all_questions)} questions")
print(f"β
Loaded {len(validation_answers)} validation answers")
# Show question preview
print(f"\nπ Questions to test:")
for i, q in enumerate(all_questions[:3]): # Show first 3
task_id = q.get('task_id', 'unknown')
question_preview = q.get('question', '')[:40] + "..."
level = q.get('Level', 'Unknown')
expected = validation_answers.get(task_id, 'N/A')
has_file = "π" if q.get('file_name') else "π"
print(f" {i+1}. {task_id[:8]}... | L{level} | {has_file} | Expected: {expected}")
print(f" {question_preview}")
if len(all_questions) > 3:
print(f" ... and {len(all_questions) - 3} more questions")
print(f"\nπ Starting logged clean test...")
print(f"π Each question will create a detailed log file")
print(f"β±οΈ Estimated time: ~{len(all_questions) * 2} minutes")
# Process first 3 questions for demonstration (you can change this)
test_questions = all_questions[:3] # Test first 3 questions
start_time = time.time()
results = []
for i, question_data in enumerate(test_questions):
print(f"\n" + "="*80)
print(f"π PROGRESS: {i+1}/{len(test_questions)}")
print(f"π Processing question {question_data.get('task_id', 'unknown')[:8]}...")
result = test_single_question(question_data, validation_answers)
results.append(result)
# Show progress
completed = i + 1
correct_so_far = len([r for r in results if r['status'] == 'CORRECT'])
current_accuracy = correct_so_far / completed * 100
print(f"π Current accuracy: {current_accuracy:.1f}% ({correct_so_far}/{completed})")
end_time = time.time()
total_duration = end_time - start_time
# Final analysis
print(f"\n" + "=" * 80)
print(f"π LOGGED CLEAN TEST RESULTS")
print(f"=" * 80)
# Calculate metrics
total_questions = len(results)
correct_answers = len([r for r in results if r['status'] == 'CORRECT'])
partial_answers = len([r for r in results if r['status'] == 'PARTIAL'])
incorrect_answers = len([r for r in results if r['status'] == 'INCORRECT'])
errors = len([r for r in results if r['status'] == 'ERROR'])
accuracy_rate = correct_answers / total_questions * 100
success_rate = (correct_answers + partial_answers) / total_questions * 100
print(f"β±οΈ Total Duration: {int(total_duration // 60)}m {int(total_duration % 60)}s")
print(f"β
**HONEST ACCURACY: {accuracy_rate:.1f}%** ({correct_answers}/{total_questions})")
print(f"π― Success Rate: {success_rate:.1f}% (including partial)")
print(f"β‘ Avg per Question: {total_duration/total_questions:.1f}s")
print(f"\nπ DETAILED BREAKDOWN:")
print(f" β
CORRECT: {correct_answers} ({correct_answers/total_questions:.1%})")
print(f" π‘ PARTIAL: {partial_answers} ({partial_answers/total_questions:.1%})")
print(f" β INCORRECT: {incorrect_answers} ({incorrect_answers/total_questions:.1%})")
print(f" π₯ ERROR: {errors} ({errors/total_questions:.1%})")
# Question-by-question results
print(f"\nπ DETAILED QUESTION RESULTS:")
for i, result in enumerate(results):
status_icon = "β
" if result['status'] == "CORRECT" else "π‘" if result['status'] == "PARTIAL" else "β"
print(f" {i+1}. {status_icon} {result['task_id'][:8]}... | {result['question_type']:12} | {result['status']:9} | {result['duration']:5.1f}s")
print(f" Expected: {result['expected_answer']}")
print(f" Got: {result['our_answer']}")
if 'error' in result:
print(f" Error: {result['error']}")
# Save results
timestamp = time.strftime("%Y%m%d_%H%M%S")
results_file = f"logs/logged_clean_test_{timestamp}.json"
with open(results_file, 'w') as f:
json.dump({
'test_metadata': {
'timestamp': timestamp,
'test_type': 'logged_clean_test_no_overrides',
'total_questions': total_questions,
'duration_seconds': total_duration,
'model': 'qwen3-235b',
'note': 'Pure LLM reasoning with full logging'
},
'metrics': {
'accuracy_rate': accuracy_rate,
'success_rate': success_rate,
'correct_answers': correct_answers,
'partial_answers': partial_answers,
'incorrect_answers': incorrect_answers,
'errors': errors
},
'detailed_results': results
}, f, indent=2)
print(f"\nπ Results summary saved to: {results_file}")
print(f"π Individual question logs saved to: logs/clean_batch_question_<id>_*.log")
# Final assessment
print(f"\nπ― HONEST ASSESSMENT:")
print(f"π« NO CHEATING - Pure LLM reasoning only")
print(f"π **Real System Accuracy: {accuracy_rate:.1f}%**")
if accuracy_rate >= 70:
print(f"π EXCELLENT: Achieves 70%+ target!")
elif accuracy_rate >= 50:
print(f"π§ GOOD: Solid performance, room for improvement")
elif accuracy_rate >= 30:
print(f"β οΈ MODERATE: Needs significant improvements")
else:
print(f"π¨ POOR: Requires major system overhaul")
print(f"\nπ Check the log files for detailed execution traces!")
return accuracy_rate, results
if __name__ == "__main__":
accuracy, results = run_logged_clean_test()
print(f"\nπ Logged clean test completed!")
print(f"π **HONEST ACCURACY: {accuracy:.1f}%**")
print(f"π Full logs available in logs/ directory") |