Spaces:
Running
Running
File size: 11,221 Bytes
c262d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
#!/usr/bin/env python3
"""
Comprehensive Accuracy Test - Full GAIA Benchmark Evaluation
Runs all 20 questions through the async batch processor for complete accuracy assessment
"""
import asyncio
import sys
from pathlib import Path
from datetime import datetime
import json
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
from tests.async_batch_processor import BatchQuestionProcessor
from gaia_web_loader import GAIAQuestionLoaderWeb
async def run_comprehensive_accuracy_test():
"""Run comprehensive accuracy test on all available GAIA questions"""
print("π― COMPREHENSIVE GAIA ACCURACY TEST")
print("=" * 80)
print(f"π Start Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
print(f"π― Goal: Establish baseline accuracy and identify improvement areas")
print()
try:
# Load all questions
print("π Loading all GAIA questions...")
loader = GAIAQuestionLoaderWeb()
all_questions = loader.questions
print(f"β
Loaded {len(all_questions)} questions from GAIA benchmark")
# Show question distribution by level
level_counts = {}
classification_preview = {}
for q in all_questions:
level = q.get('Level', 'Unknown')
level_counts[level] = level_counts.get(level, 0) + 1
# Quick classification preview (first 5 questions)
if len(classification_preview) < 5:
task_id = q.get('task_id', 'unknown')
question_preview = q.get('question', '')[:60] + "..."
has_file = "Yes" if q.get('file_name') else "No"
classification_preview[task_id[:8]] = {
'question': question_preview,
'level': level,
'has_file': has_file
}
print(f"\nπ Question Distribution:")
for level, count in sorted(level_counts.items()):
print(f" Level {level}: {count} questions")
print(f"\nπ Sample Questions:")
for task_id, info in classification_preview.items():
print(f" {task_id}... | L{info['level']} | File: {info['has_file']} | {info['question']}")
# Initialize batch processor with production settings
print(f"\nπ Initializing production-grade batch processor...")
processor = BatchQuestionProcessor(
max_concurrent=3, # Balanced concurrency for stability
question_timeout=900, # 15 minutes per question for complex cases
progress_interval=15 # Progress updates every 15 seconds
)
print(f"βοΈ Configuration:")
print(f" - Max Concurrent: {processor.max_concurrent}")
print(f" - Question Timeout: {processor.question_timeout}s (15 minutes)")
print(f" - Progress Interval: {processor.progress_interval}s")
print(f" - Expected Duration: ~{len(all_questions) * 3 // processor.max_concurrent // 60} minutes")
# Confirm before starting
print(f"\nβ οΈ This will process ALL {len(all_questions)} questions concurrently.")
print(f"π Estimated time: {len(all_questions) * 3 // processor.max_concurrent} minutes")
print(f"π Starting comprehensive accuracy test...")
print()
# Process all questions
start_time = datetime.now()
results = await processor.process_questions_batch(
all_questions,
solver_kwargs={
"use_kluster": True,
"kluster_model": "qwen3-235b"
}
)
end_time = datetime.now()
# Comprehensive results analysis
print(f"\n" + "=" * 80)
print(f"π COMPREHENSIVE TEST RESULTS")
print(f"=" * 80)
duration = (end_time - start_time).total_seconds()
accuracy = results["accuracy_metrics"]["accuracy_rate"]
success = results["accuracy_metrics"]["success_rate"]
print(f"β±οΈ Total Duration: {int(duration // 60)}m {int(duration % 60)}s")
print(f"β
Overall Accuracy: {accuracy:.1%} ({results['accuracy_metrics']['correct_answers']}/{results['completed_questions']})")
print(f"π― Success Rate: {success:.1%} (including partial matches)")
print(f"β‘ Average per Question: {results['performance_metrics']['average_duration']:.1f}s")
# Detailed breakdown
print(f"\nπ DETAILED BREAKDOWN:")
print(f" β
CORRECT: {results['accuracy_metrics']['correct_answers']}")
print(f" π‘ PARTIAL: {results['accuracy_metrics']['partial_answers']}")
print(f" β INCORRECT: {results['accuracy_metrics']['incorrect_answers']}")
print(f" β±οΈ TIMEOUT: {results['accuracy_metrics']['timeouts']}")
print(f" π₯ ERROR: {results['accuracy_metrics']['errors']}")
# Classification performance analysis
print(f"\nπ― CLASSIFICATION PERFORMANCE:")
classification_performance = {}
for result in results["detailed_results"]:
classification = result.classification
if classification not in classification_performance:
classification_performance[classification] = {
'total': 0, 'correct': 0, 'partial': 0, 'incorrect': 0
}
classification_performance[classification]['total'] += 1
if result.status == 'CORRECT':
classification_performance[classification]['correct'] += 1
elif result.status == 'PARTIAL':
classification_performance[classification]['partial'] += 1
elif result.status == 'INCORRECT':
classification_performance[classification]['incorrect'] += 1
# Sort by accuracy for prioritization
sorted_classifications = sorted(
classification_performance.items(),
key=lambda x: (x[1]['correct'] + x[1]['partial'] * 0.5) / x[1]['total'] if x[1]['total'] > 0 else 0
)
for classification, perf in sorted_classifications:
total = perf['total']
if total > 0:
accuracy_rate = perf['correct'] / total
success_rate = (perf['correct'] + perf['partial']) / total
print(f" {classification:15} | {accuracy_rate:.1%} acc | {success_rate:.1%} success | {total:2d} questions")
# Identify improvement priorities
print(f"\nπ§ IMPROVEMENT PRIORITIES:")
improvement_priorities = []
for classification, perf in sorted_classifications:
total = perf['total']
if total > 0:
accuracy_rate = perf['correct'] / total
impact_score = total * (1 - accuracy_rate) # Questions * failure rate
if accuracy_rate < 0.7: # Less than 70% accuracy
priority = "HIGH" if impact_score > 2 else "MEDIUM"
improvement_priorities.append({
'classification': classification,
'accuracy': accuracy_rate,
'total_questions': total,
'impact_score': impact_score,
'priority': priority
})
for priority_item in sorted(improvement_priorities, key=lambda x: x['impact_score'], reverse=True):
classification = priority_item['classification']
accuracy = priority_item['accuracy']
total = priority_item['total_questions']
priority = priority_item['priority']
impact = priority_item['impact_score']
print(f" π₯ {priority:6} | {classification:15} | {accuracy:.1%} accuracy | {total} questions | Impact: {impact:.1f}")
# Save detailed results
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
results_file = f"logs/comprehensive_accuracy_test_{timestamp}.json"
with open(results_file, 'w') as f:
json.dump({
'test_metadata': {
'timestamp': timestamp,
'total_questions': len(all_questions),
'duration_seconds': duration,
'configuration': {
'max_concurrent': processor.max_concurrent,
'question_timeout': processor.question_timeout,
'model': 'qwen3-235b'
}
},
'overall_metrics': results['accuracy_metrics'],
'classification_performance': classification_performance,
'improvement_priorities': improvement_priorities,
'detailed_results': [
{
'task_id': r.task_id,
'classification': r.classification,
'status': r.status,
'accuracy_score': r.accuracy_score,
'our_answer': r.our_answer,
'expected_answer': r.expected_answer,
'duration': r.total_duration,
'error_type': r.error_type
} for r in results['detailed_results']
]
}, f, indent=2)
print(f"\nπ Detailed results saved to: {results_file}")
# Summary and next steps
print(f"\nπ― NEXT STEPS RECOMMENDATION:")
if accuracy >= 0.9:
print(f" π EXCELLENT: {accuracy:.1%} accuracy achieved! Focus on edge cases.")
elif accuracy >= 0.7:
print(f" β
GOOD: {accuracy:.1%} accuracy. Target specific classifications for 90%+.")
elif accuracy >= 0.5:
print(f" π§ MODERATE: {accuracy:.1%} accuracy. Implement targeted improvements.")
else:
print(f" π¨ NEEDS WORK: {accuracy:.1%} accuracy. Focus on high-impact areas.")
if improvement_priorities:
top_priority = improvement_priorities[0]
print(f" π― TOP PRIORITY: {top_priority['classification']} ({top_priority['accuracy']:.1%} accuracy, {top_priority['total_questions']} questions)")
return results
except Exception as e:
print(f"β Comprehensive test failed: {e}")
import traceback
traceback.print_exc()
return None
async def main():
"""Run the comprehensive accuracy test"""
results = await run_comprehensive_accuracy_test()
if results:
accuracy = results["accuracy_metrics"]["accuracy_rate"]
print(f"\nπ Comprehensive accuracy test completed!")
print(f"π Final Accuracy: {accuracy:.1%}")
if accuracy >= 0.7:
print(f"π― TARGET ACHIEVED: 70%+ accuracy reached!")
else:
gap = 0.7 - accuracy
print(f"π§ GAP TO TARGET: {gap:.1%} improvement needed for 70%")
if __name__ == "__main__":
asyncio.run(main()) |