File size: 11,063 Bytes
c262d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#!/usr/bin/env python3
"""
Clean Batch Test - No overrides, pure LLM reasoning with tools
Based on test_specific_question.py but for all questions at once
"""

import os
import sys
import json
import time
from pathlib import Path
from dotenv import load_dotenv
from concurrent.futures import ThreadPoolExecutor, as_completed

# Load environment variables
load_dotenv()

# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))

# Local imports
from gaia_web_loader import GAIAQuestionLoaderWeb
from main import GAIASolver
from question_classifier import QuestionClassifier


def load_validation_answers():
    """Load correct answers from GAIA validation metadata"""
    answers = {}
    try:
        validation_path = Path(__file__).parent.parent / 'gaia_validation_metadata.jsonl'
        with open(validation_path, 'r') as f:
            for line in f:
                if line.strip():
                    data = json.loads(line.strip())
                    task_id = data.get('task_id')
                    final_answer = data.get('Final answer')
                    if task_id and final_answer:
                        answers[task_id] = final_answer
    except Exception as e:
        print(f"⚠️ Could not load validation data: {e}")
    return answers


def validate_answer(task_id: str, our_answer: str, validation_answers: dict):
    """Validate our answer against the correct answer"""
    if task_id not in validation_answers:
        return None
    
    expected = str(validation_answers[task_id]).strip()
    our_clean = str(our_answer).strip()
    
    # Exact match
    if our_clean.lower() == expected.lower():
        return {"status": "CORRECT", "expected": expected, "our": our_clean}
    
    # Check if our answer contains the expected answer
    if expected.lower() in our_clean.lower():
        return {"status": "PARTIAL", "expected": expected, "our": our_clean}
    
    return {"status": "INCORRECT", "expected": expected, "our": our_clean}


def test_single_question(question_data, validation_answers, model="qwen3-235b"):
    """Test a single question without any overrides"""
    task_id = question_data.get('task_id', 'unknown')
    
    try:
        print(f"πŸ§ͺ [{task_id[:8]}...] Starting...")
        
        # Initialize solver and classifier
        solver = GAIASolver(use_kluster=True, kluster_model=model)
        classifier = QuestionClassifier()
        
        # Classify the question
        question_text = question_data.get('question', '')
        file_name = question_data.get('file_name', '')
        classification = classifier.classify_question(question_text, file_name)
        
        # Solve the question (NO OVERRIDES - pure LLM reasoning)
        start_time = time.time()
        answer = solver.solve_question(question_data)
        end_time = time.time()
        
        duration = end_time - start_time
        
        # Validate answer
        validation_result = validate_answer(task_id, answer, validation_answers)
        
        result = {
            'task_id': task_id,
            'question_type': classification['primary_agent'],
            'complexity': classification['complexity'],
            'confidence': classification['confidence'],
            'our_answer': str(answer),
            'expected_answer': validation_result['expected'] if validation_result else 'N/A',
            'status': validation_result['status'] if validation_result else 'NO_VALIDATION',
            'duration': duration,
            'question_preview': question_data.get('question', '')[:50] + "..."
        }
        
        status_icon = "βœ…" if result['status'] == "CORRECT" else "🟑" if result['status'] == "PARTIAL" else "❌"
        print(f"{status_icon} [{task_id[:8]}...] {result['status']} | {result['question_type']} | {duration:.1f}s")
        
        return result
        
    except Exception as e:
        print(f"❌ [{task_id[:8]}...] ERROR: {str(e)}")
        return {
            'task_id': task_id,
            'question_type': 'error',
            'complexity': 0,
            'confidence': 0.0,
            'our_answer': '',
            'expected_answer': validation_answers.get(task_id, 'N/A'),
            'status': 'ERROR',
            'duration': 0.0,
            'error': str(e),
            'question_preview': question_data.get('question', '')[:50] + "..."
        }


def run_clean_batch_test():
    """Run clean batch test on all questions"""
    
    print("πŸ§ͺ CLEAN BATCH TEST - NO OVERRIDES")
    print("=" * 60)
    print("🎯 Goal: Measure real accuracy with pure LLM reasoning")
    print("🚫 No hardcoded answers or overrides")
    print("πŸ€– Pure LLM + Tools reasoning only")
    print()
    
    # Load questions and validation data
    print("πŸ“‹ Loading GAIA questions...")
    loader = GAIAQuestionLoaderWeb()
    all_questions = loader.questions
    validation_answers = load_validation_answers()
    
    print(f"βœ… Loaded {len(all_questions)} questions")
    print(f"βœ… Loaded {len(validation_answers)} validation answers")
    
    # Show question preview
    print(f"\nπŸ“‹ Questions to test:")
    for i, q in enumerate(all_questions[:5]):  # Show first 5
        task_id = q.get('task_id', 'unknown')
        question_preview = q.get('question', '')[:40] + "..."
        level = q.get('Level', 'Unknown')
        has_file = "πŸ“Ž" if q.get('file_name') else "πŸ“"
        print(f"  {i+1}. {task_id[:8]}... | L{level} | {has_file} | {question_preview}")
    
    if len(all_questions) > 5:
        print(f"  ... and {len(all_questions) - 5} more questions")
    
    print(f"\nπŸš€ Starting clean batch test...")
    print(f"⏱️  Estimated time: ~{len(all_questions) * 2} minutes")
    
    # Process all questions sequentially (to avoid resource conflicts)
    start_time = time.time()
    results = []
    
    for i, question_data in enumerate(all_questions):
        print(f"\nπŸ“Š Progress: {i+1}/{len(all_questions)}")
        result = test_single_question(question_data, validation_answers)
        results.append(result)
    
    end_time = time.time()
    total_duration = end_time - start_time
    
    # Analyze results
    print(f"\n" + "=" * 60)
    print(f"🏁 CLEAN BATCH TEST RESULTS")
    print(f"=" * 60)
    
    # Calculate metrics
    total_questions = len(results)
    correct_answers = len([r for r in results if r['status'] == 'CORRECT'])
    partial_answers = len([r for r in results if r['status'] == 'PARTIAL'])
    incorrect_answers = len([r for r in results if r['status'] == 'INCORRECT'])
    errors = len([r for r in results if r['status'] == 'ERROR'])
    
    accuracy_rate = correct_answers / total_questions * 100
    success_rate = (correct_answers + partial_answers) / total_questions * 100
    
    print(f"⏱️  Total Duration: {int(total_duration // 60)}m {int(total_duration % 60)}s")
    print(f"βœ… Pure Accuracy: {accuracy_rate:.1f}% ({correct_answers}/{total_questions})")
    print(f"🎯 Success Rate: {success_rate:.1f}% (including partial)")
    print(f"⚑ Avg per Question: {total_duration/total_questions:.1f}s")
    
    print(f"\nπŸ“Š DETAILED BREAKDOWN:")
    print(f"  βœ… CORRECT: {correct_answers} ({correct_answers/total_questions:.1%})")
    print(f"  🟑 PARTIAL: {partial_answers} ({partial_answers/total_questions:.1%})")
    print(f"  ❌ INCORRECT: {incorrect_answers} ({incorrect_answers/total_questions:.1%})")
    print(f"  πŸ’₯ ERROR: {errors} ({errors/total_questions:.1%})")
    
    # Classification performance
    print(f"\n🎯 CLASSIFICATION PERFORMANCE:")
    classification_stats = {}
    
    for result in results:
        classification = result['question_type']
        if classification not in classification_stats:
            classification_stats[classification] = {'total': 0, 'correct': 0, 'partial': 0}
        
        classification_stats[classification]['total'] += 1
        if result['status'] == 'CORRECT':
            classification_stats[classification]['correct'] += 1
        elif result['status'] == 'PARTIAL':
            classification_stats[classification]['partial'] += 1
    
    for classification, stats in sorted(classification_stats.items()):
        total = stats['total']
        correct = stats['correct']
        partial = stats['partial']
        accuracy = correct / total * 100 if total > 0 else 0
        success = (correct + partial) / total * 100 if total > 0 else 0
        print(f"  {classification:15} | {accuracy:5.1f}% acc | {success:5.1f}% success | {total:2d} questions")
    
    # Detailed results
    print(f"\nπŸ“‹ DETAILED QUESTION RESULTS:")
    for i, result in enumerate(results):
        status_icon = "βœ…" if result['status'] == "CORRECT" else "🟑" if result['status'] == "PARTIAL" else "❌"
        print(f"  {i+1:2d}. {status_icon} {result['task_id'][:8]}... | {result['question_type']:12} | {result['status']:9} | {result['duration']:5.1f}s")
        print(f"      Expected: {result['expected_answer']}")
        print(f"      Got:      {result['our_answer']}")
        if 'error' in result:
            print(f"      Error:    {result['error']}")
        print()
    
    # Save results
    timestamp = time.strftime("%Y%m%d_%H%M%S")
    results_file = f"logs/clean_batch_test_{timestamp}.json"
    
    with open(results_file, 'w') as f:
        json.dump({
            'test_metadata': {
                'timestamp': timestamp,
                'test_type': 'clean_batch_no_overrides',
                'total_questions': total_questions,
                'duration_seconds': total_duration,
                'model': 'qwen3-235b'
            },
            'metrics': {
                'accuracy_rate': accuracy_rate,
                'success_rate': success_rate,
                'correct_answers': correct_answers,
                'partial_answers': partial_answers,
                'incorrect_answers': incorrect_answers,
                'errors': errors
            },
            'classification_performance': classification_stats,
            'detailed_results': results
        }, f, indent=2)
    
    print(f"πŸ“ Results saved to: {results_file}")
    
    # Final assessment
    print(f"\n🎯 FINAL ASSESSMENT:")
    if accuracy_rate >= 70:
        print(f"πŸ† EXCELLENT: {accuracy_rate:.1f}% accuracy achieves 70%+ target!")
    elif accuracy_rate >= 50:
        print(f"πŸ”§ GOOD PROGRESS: {accuracy_rate:.1f}% accuracy, approaching target")
    elif accuracy_rate >= 30:
        print(f"⚠️ MODERATE: {accuracy_rate:.1f}% accuracy, significant room for improvement")
    else:
        print(f"🚨 NEEDS WORK: {accuracy_rate:.1f}% accuracy requires major improvements")
    
    print(f"\nπŸ” This is the REAL accuracy without any hardcoded answers!")
    print(f"πŸ“Š Pure LLM + Tools Performance: {accuracy_rate:.1f}%")
    
    return accuracy_rate, results


if __name__ == "__main__":
    accuracy, results = run_clean_batch_test()
    print(f"\nπŸŽ‰ Clean batch test completed!")
    print(f"πŸ“Š Real Accuracy: {accuracy:.1f}%")