Spaces:
Running
Running
File size: 14,314 Bytes
ba68fc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
#!/usr/bin/env python3
"""
Question processing and agent coordination for GAIA solver.
Handles question classification, file management, and agent execution.
"""
import re
import time
from typing import Dict, Any, List, Optional
from ..config.settings import Config
from ..models.manager import ModelManager
from ..utils.exceptions import GAIAError, ClassificationError
class QuestionProcessor:
"""Processes questions and coordinates agent execution."""
def __init__(self, model_manager: ModelManager, config: Config):
self.model_manager = model_manager
self.config = config
self.question_loader = None
self.classifier = None
# Initialize components lazily
self._init_components()
# Prompt templates (simplified version)
self.prompt_templates = self._get_prompt_templates()
def _init_components(self) -> None:
"""Initialize question loader and classifier."""
try:
# Import and initialize question loader
from ..utils.question_loader import GAIAQuestionLoader
self.question_loader = GAIAQuestionLoader()
# Import and initialize classifier
from ..utils.classifier import QuestionClassifier
self.classifier = QuestionClassifier(self.model_manager)
except ImportError:
# Fallback to legacy imports if new modules not ready
print("โ ๏ธ Using legacy question processing components")
self._init_legacy_components()
def _init_legacy_components(self) -> None:
"""Initialize legacy components as fallback."""
try:
import sys
import os
# Add parent directory to path for legacy imports
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
if parent_dir not in sys.path:
sys.path.insert(0, parent_dir)
from gaia_web_loader import GAIAQuestionLoaderWeb
from question_classifier import QuestionClassifier as LegacyClassifier
self.question_loader = GAIAQuestionLoaderWeb()
self.classifier = LegacyClassifier()
except ImportError as e:
print(f"โ ๏ธ Could not initialize question processing components: {e}")
# Create minimal fallback
self.question_loader = None
self.classifier = None
def _get_prompt_templates(self) -> Dict[str, str]:
"""Get simplified prompt templates."""
return {
"multimedia": """You are solving a GAIA benchmark multimedia question.
TASK: {question_text}
APPROACH:
1. Use appropriate multimedia analysis tools
2. For YouTube videos, ALWAYS use analyze_youtube_video tool
3. Extract exact information requested
4. Provide precise final answer
Focus on accuracy and use tool outputs directly.""",
"research": """You are solving a GAIA benchmark research question.
TASK: {question_text}
APPROACH:
1. Use research_with_comprehensive_fallback for robust search
2. Try multiple research methods if needed
3. Use tool outputs directly - do not fabricate information
4. Provide factual, verified answer
Trust validated research data over internal knowledge.""",
"logic_math": """You are solving a GAIA benchmark logic/math question.
TASK: {question_text}
APPROACH:
1. Break down the problem step-by-step
2. Use advanced_calculator for calculations
3. Show your work clearly
4. Verify your final answer
Focus on mathematical precision.""",
"file_processing": """You are solving a GAIA benchmark file processing question.
TASK: {question_text}
APPROACH:
1. Use appropriate file analysis tools
2. Extract the specific data requested
3. Process and calculate as needed
4. Use tool results directly
Trust file processing tool outputs.""",
"chess": """You are solving a GAIA benchmark chess question.
TASK: {question_text}
APPROACH:
1. Use analyze_chess_multi_tool for comprehensive analysis
2. Take the EXACT move returned by the tool
3. Do not modify or interpret the result
4. Use tool result directly as final answer
Trust the chess analysis tool completely.""",
"general": """You are solving a GAIA benchmark question.
TASK: {question_text}
APPROACH:
1. Analyze the question carefully
2. Choose appropriate tools
3. Work systematically
4. Provide clear, direct answer
Focus on answering exactly what is asked."""
}
def process_question(self, question_data: Dict[str, Any]) -> str:
"""Process a question and return the raw response."""
question_text = question_data.get("question", "")
task_id = question_data.get("task_id", "unknown")
# Handle file downloads if needed
enhanced_question = self._handle_file_processing(question_data)
# Classify the question
classification = self._classify_question(enhanced_question, question_data)
# Get appropriate prompt
prompt = self._get_enhanced_prompt(enhanced_question, classification)
# Execute with agent
response = self._execute_with_agent(prompt)
return response
def _handle_file_processing(self, question_data: Dict[str, Any]) -> str:
"""Handle file downloads and enhance question text."""
question_text = question_data.get("question", "")
has_file = bool(question_data.get("file_name", ""))
if has_file and self.question_loader:
file_name = question_data.get('file_name')
task_id = question_data.get('task_id', 'unknown')
print(f"๐ Note: This question has an associated file: {file_name}")
try:
# Download the file
print(f"โฌ๏ธ Downloading file: {file_name}")
downloaded_path = self.question_loader.download_file(task_id)
if downloaded_path:
print(f"โ
File downloaded to: {downloaded_path}")
question_text += f"\n\n[Note: This question references a file: {downloaded_path}]"
else:
print(f"โ ๏ธ Failed to download file: {file_name}")
question_text += f"\n\n[Note: This question references a file: {file_name} - download failed]"
except Exception as e:
print(f"โ ๏ธ Error downloading file: {e}")
question_text += f"\n\n[Note: This question references a file: {file_name} - download error]"
return question_text
def _classify_question(self, question_text: str, question_data: Dict[str, Any]) -> Dict[str, Any]:
"""Classify the question to determine agent type."""
try:
if self.classifier:
file_name = question_data.get('file_name', '')
classification = self.classifier.classify_question(question_text, file_name)
else:
# Fallback classification
classification = self._fallback_classification(question_text)
# Special handling for known patterns
classification = self._enhance_classification(question_text, classification)
return classification
except Exception as e:
print(f"โ ๏ธ Classification error: {e}")
# Return general classification as fallback
return {
'primary_agent': 'general',
'complexity': 3,
'tools_needed': [],
'confidence': 0.5
}
def _fallback_classification(self, question_text: str) -> Dict[str, Any]:
"""Simple fallback classification logic."""
question_lower = question_text.lower()
# YouTube detection
youtube_pattern = r'(https?://)?(www\.)?(youtube\.com|youtu\.?be)'
if re.search(youtube_pattern, question_text):
return {
'primary_agent': 'multimedia',
'complexity': 3,
'tools_needed': ['analyze_youtube_video'],
'confidence': 0.9
}
# Chess detection
chess_keywords = ['chess', 'position', 'move', 'algebraic notation']
if any(keyword in question_lower for keyword in chess_keywords):
return {
'primary_agent': 'chess',
'complexity': 4,
'tools_needed': ['analyze_chess_multi_tool'],
'confidence': 0.9
}
# File processing detection
file_extensions = ['.xlsx', '.xls', '.py', '.txt', '.pdf']
if any(ext in question_lower for ext in file_extensions):
return {
'primary_agent': 'file_processing',
'complexity': 3,
'tools_needed': ['analyze_excel_file', 'analyze_python_code'],
'confidence': 0.8
}
# Math detection
math_keywords = ['calculate', 'solve', 'equation', 'formula', 'math']
if any(keyword in question_lower for keyword in math_keywords):
return {
'primary_agent': 'logic_math',
'complexity': 3,
'tools_needed': ['advanced_calculator'],
'confidence': 0.7
}
# Research fallback
return {
'primary_agent': 'research',
'complexity': 3,
'tools_needed': ['research_with_comprehensive_fallback'],
'confidence': 0.6
}
def _enhance_classification(self, question_text: str, classification: Dict[str, Any]) -> Dict[str, Any]:
"""Enhance classification with special handling."""
question_lower = question_text.lower()
# Force YouTube classification
youtube_url_pattern = r'(https?://)?(www\.)?(youtube\.com|youtu\.?be)/(?:watch\?v=|embed/|v/|shorts/|playlist\?list=|channel/|user/|[^/\s]+/?)?([^\s&?/]+)'
if re.search(youtube_url_pattern, question_text):
classification['primary_agent'] = 'multimedia'
if 'analyze_youtube_video' not in classification.get('tools_needed', []):
classification['tools_needed'] = ['analyze_youtube_video'] + classification.get('tools_needed', [])
print("๐ฅ YouTube URL detected - forcing multimedia classification")
# Force chess classification
chess_keywords = ['chess', 'position', 'move', 'algebraic notation', 'black to move', 'white to move']
if any(keyword in question_lower for keyword in chess_keywords):
classification['primary_agent'] = 'chess'
print("โ๏ธ Chess question detected - using specialized chess analysis")
return classification
def _get_enhanced_prompt(self, question_text: str, classification: Dict[str, Any]) -> str:
"""Get enhanced prompt based on classification."""
question_type = classification.get('primary_agent', 'general')
print(f"๐ฏ Question type: {question_type}")
print(f"๐ Complexity: {classification.get('complexity', 'unknown')}/5")
print(f"๐ง Tools needed: {classification.get('tools_needed', [])}")
# Get appropriate template
if question_type in self.prompt_templates:
template = self.prompt_templates[question_type]
else:
template = self.prompt_templates["general"]
enhanced_prompt = template.format(question_text=question_text)
print(f"๐ Using {question_type} prompt template")
return enhanced_prompt
def _execute_with_agent(self, prompt: str) -> str:
"""Execute prompt with smolagents agent."""
try:
# Get current model
model = self.model_manager.get_current_model()
# Create fresh agent for memory management
from smolagents import CodeAgent
# Import tools
tools = self._get_tools()
print("๐ง Creating fresh agent to avoid memory accumulation...")
agent = CodeAgent(
model=model,
tools=tools,
max_steps=self.config.model.MAX_STEPS,
verbosity_level=self.config.model.VERBOSITY_LEVEL
)
# Execute the prompt
response = agent.run(prompt)
raw_answer = str(response)
print(f"โ
Generated raw answer: {raw_answer[:100]}...")
return raw_answer
except Exception as e:
# Try fallback model if available
if self.model_manager._switch_to_fallback():
print("๐ Retrying with fallback model...")
return self._execute_with_agent(prompt)
else:
raise GAIAError(f"Agent execution failed: {e}")
def _get_tools(self) -> List:
"""Get available tools for the agent."""
try:
# Import tools from the old system for now
import sys
import os
parent_dir = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
if parent_dir not in sys.path:
sys.path.insert(0, parent_dir)
from gaia_tools import GAIA_TOOLS
return GAIA_TOOLS
except ImportError:
print("โ ๏ธ Could not import GAIA_TOOLS, using empty tool list")
return []
def get_random_question(self) -> Optional[Dict[str, Any]]:
"""Get a random question."""
if self.question_loader:
return self.question_loader.get_random_question()
return None
def get_questions(self, max_questions: int = 5) -> List[Dict[str, Any]]:
"""Get multiple questions."""
if self.question_loader and hasattr(self.question_loader, 'questions'):
return self.question_loader.questions[:max_questions]
return [] |