Till Fischer
commited on
Commit
·
d96f744
1
Parent(s):
ec6d3be
Update all changes
Browse files- analyze_aspects.py +28 -36
- app.py +3 -0
- download_nltk_resources.py +4 -0
analyze_aspects.py
CHANGED
@@ -4,6 +4,9 @@
|
|
4 |
#python /Users/fischer/Desktop/HanserMVP/scraping/analyze_aspects.py --isbn "9783446264199" --db-path /Users/fischer/Desktop/buch_datenbank.sqlite --languages de
|
5 |
# python analyze_aspects.py --isbn "9783446264199" --db-path /Pfad/zur/sqlite.db --languages de
|
6 |
# Fixing Punkt tokenizer bug
|
|
|
|
|
|
|
7 |
import sqlite3
|
8 |
import argparse
|
9 |
import logging
|
@@ -12,39 +15,10 @@ import nltk
|
|
12 |
from transformers import pipeline
|
13 |
from collections import defaultdict
|
14 |
import matplotlib.pyplot as plt
|
15 |
-
import os
|
16 |
-
nltk.download('punkt')
|
17 |
-
|
18 |
-
def visualize_aspects(aspect_results: dict[str, list[float]], output_dir: Path, filename: str = "sentiment_aspekte.png"):
|
19 |
-
output_dir.mkdir(parents=True, exist_ok=True)
|
20 |
-
|
21 |
-
aspects = list(aspect_results.keys())
|
22 |
-
avg_scores = [sum(scores) / len(scores) for scores in aspect_results.values()]
|
23 |
-
colors = ['green' if score > 0.1 else 'red' if score < -0.1 else 'gray' for score in avg_scores]
|
24 |
-
|
25 |
-
plt.figure(figsize=(10, 6))
|
26 |
-
bars = plt.barh(aspects, avg_scores, color=colors)
|
27 |
-
plt.axvline(x=0, color='black', linewidth=0.8)
|
28 |
-
plt.xlabel("Durchschnittlicher Sentiment-Score")
|
29 |
-
plt.title("Sentiment-Analyse pro Aspekt")
|
30 |
-
|
31 |
-
for bar, score in zip(bars, avg_scores):
|
32 |
-
plt.text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2,
|
33 |
-
f"{score:.2f}", va='center')
|
34 |
-
|
35 |
-
plt.tight_layout()
|
36 |
-
plt.gca().invert_yaxis()
|
37 |
-
|
38 |
-
output_path = output_dir / filename
|
39 |
-
plt.savefig(output_path, dpi=300)
|
40 |
-
plt.close()
|
41 |
-
|
42 |
-
logger.info(f"Diagramm gespeichert unter: {output_path}")
|
43 |
-
|
44 |
|
45 |
-
#
|
46 |
-
nltk.download('punkt'
|
47 |
-
from nltk
|
48 |
|
49 |
# Logging Configuration
|
50 |
def configure_logging():
|
@@ -78,7 +52,6 @@ ASPECT_LABEL_MAP_EN = {
|
|
78 |
|
79 |
ALL_LABELS = [label for labels in ASPECT_LABEL_MAP.values() for label in labels]
|
80 |
|
81 |
-
|
82 |
# --- Datenbankzugriff ---
|
83 |
|
84 |
def load_reviews(db_path: Path, isbn: str) -> list:
|
@@ -98,7 +71,6 @@ def load_reviews(db_path: Path, isbn: str) -> list:
|
|
98 |
texts_to_analyze.append((review_id, text_en, 'en'))
|
99 |
return texts_to_analyze
|
100 |
|
101 |
-
|
102 |
# --- Analysefunktion ---
|
103 |
|
104 |
def analyze_quickwin(db_path: Path, isbn: str, device: int = -1, languages: list[str] = ["de", "en"]) -> dict:
|
@@ -120,7 +92,7 @@ def analyze_quickwin(db_path: Path, isbn: str, device: int = -1, languages: list
|
|
120 |
continue
|
121 |
|
122 |
logger.info(f"Review ID {review_id} ({lang}) wird verarbeitet.")
|
123 |
-
|
124 |
lang_map = {'de': 'german', 'en': 'english'}
|
125 |
sentences = sent_tokenize(text, language=lang_map.get(lang, 'english'))
|
126 |
|
@@ -171,6 +143,26 @@ def analyze_quickwin(db_path: Path, isbn: str, device: int = -1, languages: list
|
|
171 |
logger.info(f"Total aspects found: {total_aspects}")
|
172 |
return aspect_results
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
# --- Entry Point ---
|
176 |
|
@@ -194,4 +186,4 @@ def main():
|
|
194 |
output_dir = Path("output")
|
195 |
visualize_aspects(aspect_results, output_dir)
|
196 |
else:
|
197 |
-
logger.info("Keine Aspekt-Daten zur Visualisierung verfügbar.")
|
|
|
4 |
#python /Users/fischer/Desktop/HanserMVP/scraping/analyze_aspects.py --isbn "9783446264199" --db-path /Users/fischer/Desktop/buch_datenbank.sqlite --languages de
|
5 |
# python analyze_aspects.py --isbn "9783446264199" --db-path /Pfad/zur/sqlite.db --languages de
|
6 |
# Fixing Punkt tokenizer bug
|
7 |
+
#!/usr/bin/env python3
|
8 |
+
# analyze_aspects.py
|
9 |
+
|
10 |
import sqlite3
|
11 |
import argparse
|
12 |
import logging
|
|
|
15 |
from transformers import pipeline
|
16 |
from collections import defaultdict
|
17 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# ✅ Download punkt tokenizer wie lokal
|
20 |
+
nltk.download('punkt')
|
21 |
+
from nltk import sent_tokenize
|
22 |
|
23 |
# Logging Configuration
|
24 |
def configure_logging():
|
|
|
52 |
|
53 |
ALL_LABELS = [label for labels in ASPECT_LABEL_MAP.values() for label in labels]
|
54 |
|
|
|
55 |
# --- Datenbankzugriff ---
|
56 |
|
57 |
def load_reviews(db_path: Path, isbn: str) -> list:
|
|
|
71 |
texts_to_analyze.append((review_id, text_en, 'en'))
|
72 |
return texts_to_analyze
|
73 |
|
|
|
74 |
# --- Analysefunktion ---
|
75 |
|
76 |
def analyze_quickwin(db_path: Path, isbn: str, device: int = -1, languages: list[str] = ["de", "en"]) -> dict:
|
|
|
92 |
continue
|
93 |
|
94 |
logger.info(f"Review ID {review_id} ({lang}) wird verarbeitet.")
|
95 |
+
|
96 |
lang_map = {'de': 'german', 'en': 'english'}
|
97 |
sentences = sent_tokenize(text, language=lang_map.get(lang, 'english'))
|
98 |
|
|
|
143 |
logger.info(f"Total aspects found: {total_aspects}")
|
144 |
return aspect_results
|
145 |
|
146 |
+
def visualize_aspects(aspect_results: dict[str, list[float]], output_dir: Path, filename: str = "sentiment_aspekte.png"):
|
147 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
148 |
+
aspects = list(aspect_results.keys())
|
149 |
+
avg_scores = [sum(scores) / len(scores) for scores in aspect_results.values()]
|
150 |
+
colors = ['green' if score > 0.1 else 'red' if score < -0.1 else 'gray' for score in avg_scores]
|
151 |
+
import matplotlib.pyplot as plt
|
152 |
+
plt.figure(figsize=(10, 6))
|
153 |
+
bars = plt.barh(aspects, avg_scores, color=colors)
|
154 |
+
plt.axvline(x=0, color='black', linewidth=0.8)
|
155 |
+
plt.xlabel("Durchschnittlicher Sentiment-Score")
|
156 |
+
plt.title("Sentiment-Analyse pro Aspekt")
|
157 |
+
for bar, score in zip(bars, avg_scores):
|
158 |
+
plt.text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2,
|
159 |
+
f"{score:.2f}", va='center')
|
160 |
+
plt.tight_layout()
|
161 |
+
plt.gca().invert_yaxis()
|
162 |
+
output_path = output_dir / filename
|
163 |
+
plt.savefig(output_path, dpi=300)
|
164 |
+
plt.close()
|
165 |
+
logger.info(f"Diagramm gespeichert unter: {output_path}")
|
166 |
|
167 |
# --- Entry Point ---
|
168 |
|
|
|
186 |
output_dir = Path("output")
|
187 |
visualize_aspects(aspect_results, output_dir)
|
188 |
else:
|
189 |
+
logger.info("Keine Aspekt-Daten zur Visualisierung verfügbar.")
|
app.py
CHANGED
@@ -5,6 +5,9 @@ from analyze_aspects import analyze_quickwin, visualize_aspects
|
|
5 |
from pathlib import Path
|
6 |
import tempfile
|
7 |
import shutil
|
|
|
|
|
|
|
8 |
|
9 |
def run_analysis(db_file, isbn, languages):
|
10 |
if not isbn.strip():
|
|
|
5 |
from pathlib import Path
|
6 |
import tempfile
|
7 |
import shutil
|
8 |
+
import os
|
9 |
+
|
10 |
+
os.system("python download_nltk_resources.py")
|
11 |
|
12 |
def run_analysis(db_file, isbn, languages):
|
13 |
if not isbn.strip():
|
download_nltk_resources.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import nltk
|
2 |
+
|
3 |
+
nltk.download('punkt')
|
4 |
+
nltk.download('stopwords')
|