|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sqlite3 |
|
import argparse |
|
import logging |
|
from pathlib import Path |
|
import nltk |
|
from transformers import pipeline |
|
from collections import defaultdict |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
nltk.download('punkt') |
|
from nltk import sent_tokenize |
|
|
|
|
|
def configure_logging(): |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
return logging.getLogger(__name__) |
|
|
|
logger = configure_logging() |
|
|
|
|
|
ASPECT_LABEL_MAP = { |
|
"Handlung": ["Handlung", "Plot", "Story", "Aufbau"], |
|
"Charaktere": ["Charaktere", "Figuren", "Protagonisten", "Nebenfiguren", "Beziehungen"], |
|
"Stil": ["Stil", "Sprachstil", "Sprache", "Erzählweise"], |
|
"Emotionale Wirkung": ["Lesevergnügen", "Berührend", "Bewegend", "Begeisternd", "Spannend"], |
|
"Tiefgang": ["Tiefgang", "Nachdenklich", "Philosophisch", "kritisch"], |
|
"Thema & Kontext": ["Thema", "Motiv", "Zeitgeschehen", "Historischer Kontext", "Gesellschaft"], |
|
"Originalität": ["Originalität", "Kreativität", "Innovativ", "Idee", 'Humor'], |
|
"Recherche & Authentizität": ["Recherche", "Authentizität", "Realismus", "Fakten"] |
|
} |
|
|
|
ASPECT_LABEL_MAP_EN = { |
|
"Plot": ["Plot", "Story", "Narrative", "Structure"], |
|
"Characters": ["Characters", "Protagonists", "Antagonists", "Relationships"], |
|
"Style": ["Style", "Language", "Tone", "Narration"], |
|
"Emotional Impact": ["Touching", "Funny", "Exciting", "Moving", "Engaging"], |
|
"Depth": ["Philosophical", "Thought-provoking", "Insightful", "Critical"], |
|
"Theme & Context": ["Theme", "Motif", "Historical Context", "Social Issues"], |
|
"Originality": ["Originality", "Creativity", "Innovation", "Idea"], |
|
"Research & Authenticity": ["Research", "Authenticity", "Realism", "Facts"] |
|
} |
|
|
|
ALL_LABELS = [label for labels in ASPECT_LABEL_MAP.values() for label in labels] |
|
|
|
|
|
|
|
def load_reviews(db_path: Path, isbn: str) -> list: |
|
conn = sqlite3.connect(db_path) |
|
cursor = conn.cursor() |
|
cursor.execute( |
|
"SELECT id, cleaned_text, cleaned_text_en FROM reviews_und_notizen WHERE buch_isbn = ?", |
|
(isbn,) |
|
) |
|
rows = cursor.fetchall() |
|
conn.close() |
|
texts_to_analyze = [] |
|
for review_id, text_de, text_en in rows: |
|
if text_de and isinstance(text_de, str): |
|
texts_to_analyze.append((review_id, text_de, 'de')) |
|
if text_en and isinstance(text_en, str): |
|
texts_to_analyze.append((review_id, text_en, 'en')) |
|
return texts_to_analyze |
|
|
|
|
|
|
|
def analyze_quickwin(db_path: Path, isbn: str, device: int = -1, languages: list[str] = ["de", "en"]) -> dict: |
|
reviews = load_reviews(db_path, isbn) |
|
reviews = [r for r in reviews if r[2] in languages] |
|
if not reviews: |
|
logger.warning(f"Keine gesäuberten Reviews für ISBN {isbn} in den gewählten Sprachen gefunden.") |
|
return {} |
|
|
|
zsl = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=device, multi_label=True) |
|
sent_de = pipeline("sentiment-analysis", model="oliverguhr/german-sentiment-bert", device=device) |
|
sent_en = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device) |
|
|
|
aspect_results = defaultdict(list) |
|
total_aspects = 0 |
|
|
|
for review_id, text, lang in reviews: |
|
if not text: |
|
continue |
|
|
|
logger.info(f"Review ID {review_id} ({lang}) wird verarbeitet.") |
|
|
|
lang_map = {'de': 'german', 'en': 'english'} |
|
tokenizer = nltk.data.load(f"tokenizers/punkt/{lang_map.get(lang, 'english')}.pickle") |
|
sentences = tokenizer.tokenize(text) |
|
|
|
if lang == 'de': |
|
aspect_map = ASPECT_LABEL_MAP |
|
all_labels = ALL_LABELS |
|
sent_pipeline = sent_de |
|
hypothesis_template = "Dieser Satz handelt von {}." |
|
elif lang == 'en': |
|
aspect_map = ASPECT_LABEL_MAP_EN |
|
all_labels = [label for labels in aspect_map.values() for label in labels] |
|
sent_pipeline = sent_en |
|
hypothesis_template = "This sentence is about {}." |
|
else: |
|
continue |
|
|
|
for sent in sentences: |
|
if not sent.strip() or len(sent) < 15: |
|
continue |
|
|
|
result = zsl(sent, candidate_labels=all_labels, hypothesis_template=hypothesis_template) |
|
|
|
main_label = "" |
|
best_score = 0.0 |
|
for label, score in zip(result["labels"], result["scores"]): |
|
if score > 0.8: |
|
main_label = next((k for k, v in aspect_map.items() if label in v), label) |
|
best_score = score |
|
break |
|
|
|
if not main_label: |
|
continue |
|
|
|
ml_sentiment = sent_pipeline(sent)[0] |
|
ml_score = ml_sentiment['score'] if ml_sentiment['label'].upper().startswith('POS') else -ml_sentiment['score'] |
|
final_score = ml_score |
|
final_label = 'POS' if final_score > 0.1 else 'NEG' if final_score < -0.1 else 'NEU' |
|
|
|
print( |
|
f"Review {review_id} ({lang}) | Satz: {sent}\n" |
|
f" Aspekt: {main_label} (via '{result['labels'][0]}', {best_score:.2f}) | " |
|
f"ML: {ml_sentiment['label']}({ml_sentiment['score']:.2f}) -> Final: {final_label}({final_score:.2f})" |
|
) |
|
|
|
aspect_results[main_label].append(final_score) |
|
total_aspects += 1 |
|
|
|
logger.info(f"Total aspects found: {total_aspects}") |
|
return aspect_results |
|
|
|
def visualize_aspects(aspect_results: dict[str, list[float]], output_dir: Path, filename: str = "sentiment_aspekte.png"): |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
aspects = list(aspect_results.keys()) |
|
avg_scores = [sum(scores) / len(scores) for scores in aspect_results.values()] |
|
colors = ['green' if score > 0.1 else 'red' if score < -0.1 else 'gray' for score in avg_scores] |
|
import matplotlib.pyplot as plt |
|
plt.figure(figsize=(10, 6)) |
|
bars = plt.barh(aspects, avg_scores, color=colors) |
|
plt.axvline(x=0, color='black', linewidth=0.8) |
|
plt.xlabel("Durchschnittlicher Sentiment-Score") |
|
plt.title("Sentiment-Analyse pro Aspekt") |
|
for bar, score in zip(bars, avg_scores): |
|
plt.text(bar.get_width() + 0.01, bar.get_y() + bar.get_height() / 2, |
|
f"{score:.2f}", va='center') |
|
plt.tight_layout() |
|
plt.gca().invert_yaxis() |
|
output_path = output_dir / filename |
|
plt.savefig(output_path, dpi=300) |
|
plt.close() |
|
logger.info(f"Diagramm gespeichert unter: {output_path}") |
|
|
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Quick-Win ABSA ohne SentiWS") |
|
parser.add_argument("--db-path", required=True, help="Pfad zur SQLite-Datenbank") |
|
parser.add_argument("--isbn", required=True, help="ISBN des Buchs") |
|
parser.add_argument("--gpu", action="store_true", help="GPU verwenden (device=0)") |
|
parser.add_argument("--languages", nargs="+", choices=["de", "en"], default=["de", "en"], |
|
help="Sprachen der Reviews, z. B. --languages de oder --languages de en") |
|
args = parser.parse_args() |
|
|
|
device = 0 if args.gpu else -1 |
|
aspect_results = analyze_quickwin( |
|
Path(args.db_path), args.isbn, |
|
device=device, |
|
languages=args.languages |
|
) |
|
|
|
if aspect_results: |
|
output_dir = Path("output") |
|
visualize_aspects(aspect_results, output_dir) |
|
else: |
|
logger.info("Keine Aspekt-Daten zur Visualisierung verfügbar.") |
|
|