Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| import gradio as gr | |
| import spaces | |
| from threading import Thread | |
| MODEL = "tiiuae/Falcon3-7B-Instruct-1.58bit" | |
| TITLE = "<h1><center>Falcon3-1.58bit-instruct playground</center></h1>" | |
| SUB_TITLE = """<center>This interface has been created for quick validation purposes, do not use it for production.</center>""" | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| END_MESSAGE = """ | |
| \n | |
| **The conversation has reached to its end, please press "Clear" to restart a new conversation** | |
| """ | |
| device = "cuda" # for GPU usage or "cpu" for CPU usage | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL, | |
| torch_dtype=torch.bfloat16, | |
| ).to(device) | |
| def stream_chat( | |
| message: str, | |
| history: list, | |
| temperature: float = 0.3, | |
| max_new_tokens: int = 128, | |
| top_p: float = 1.0, | |
| top_k: int = 20, | |
| penalty: float = 1.2, | |
| ): | |
| print(f'message: {message}') | |
| print(f'history: {history}') | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": answer}, | |
| ]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt = True) | |
| inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=inputs, | |
| max_new_tokens = max_new_tokens, | |
| do_sample = False if temperature == 0 else True, | |
| top_p = top_p, | |
| top_k = top_k, | |
| temperature = temperature, | |
| streamer=streamer, | |
| pad_token_id = 10, | |
| ) | |
| with torch.no_grad(): | |
| thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| print(f'response: {buffer}') | |
| chatbot = gr.Chatbot(height=600) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(SUB_TITLE) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.3, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=4096, | |
| step=1, | |
| value=128, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.2, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Hello there, can you suggest few places to visit in UAE?"], | |
| ["What UAE is known for?"], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |