Update app.py
Browse files
app.py
CHANGED
@@ -12,9 +12,9 @@ os.system("apt-get install -y ffmpeg")
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
-
# Load BLIP-2 model
|
16 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
17 |
-
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b").to(device)
|
18 |
|
19 |
# Load Whisper model
|
20 |
whisper_model = whisper.load_model("base")
|
@@ -24,18 +24,20 @@ def transcribe(audio_path):
|
|
24 |
return result["text"]
|
25 |
|
26 |
def ask_image(image, audio):
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
print(f"Answer: {answer}")
|
37 |
|
38 |
-
# Convert
|
39 |
tts = gTTS(answer)
|
40 |
with NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
41 |
tts.save(f.name)
|
@@ -45,14 +47,15 @@ def ask_image(image, audio):
|
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown("## 🎤🖼️ Ask-the-Image: Ask questions about an image using your voice")
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
text_output = gr.Textbox(label="Answer")
|
53 |
-
audio_output = gr.Audio(label="Answer in Speech")
|
54 |
-
|
55 |
-
btn = gr.Button("Ask")
|
56 |
btn.click(fn=ask_image, inputs=[image_input, audio_input], outputs=[text_output, audio_output])
|
57 |
|
58 |
-
demo.launch()
|
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
# Load BLIP-2 model
|
16 |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
17 |
+
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
|
18 |
|
19 |
# Load Whisper model
|
20 |
whisper_model = whisper.load_model("base")
|
|
|
24 |
return result["text"]
|
25 |
|
26 |
def ask_image(image, audio):
|
27 |
+
# Transcribe the audio question
|
28 |
+
question = transcribe(audio)
|
29 |
+
print(f"Question: {question}")
|
30 |
+
|
31 |
+
# Prepare inputs with both image and question
|
32 |
+
inputs = processor(image, question, return_tensors="pt").to(device, torch.float16)
|
33 |
+
|
34 |
+
# Generate response
|
35 |
+
generated_ids = model.generate(**inputs, max_new_tokens=100)
|
36 |
+
answer = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
37 |
+
|
38 |
print(f"Answer: {answer}")
|
39 |
|
40 |
+
# Convert answer to speech
|
41 |
tts = gTTS(answer)
|
42 |
with NamedTemporaryFile(delete=False, suffix=".mp3") as f:
|
43 |
tts.save(f.name)
|
|
|
47 |
|
48 |
with gr.Blocks() as demo:
|
49 |
gr.Markdown("## 🎤🖼️ Ask-the-Image: Ask questions about an image using your voice")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
image_input = gr.Image(type="pil", label="Upload an Image")
|
53 |
+
audio_input = gr.Audio(type="filepath", label="Ask a Question (voice)")
|
54 |
+
|
55 |
+
btn = gr.Button("Ask the Image")
|
56 |
text_output = gr.Textbox(label="Answer")
|
57 |
+
audio_output = gr.Audio(label="Answer in Speech", autoplay=True)
|
58 |
+
|
|
|
59 |
btn.click(fn=ask_image, inputs=[image_input, audio_input], outputs=[text_output, audio_output])
|
60 |
|
61 |
+
demo.launch()
|