|
import torch
|
|
from PIL import Image
|
|
import gradio as gr
|
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration, pipeline
|
|
from gtts import gTTS
|
|
import os
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
|
model = Blip2ForConditionalGeneration.from_pretrained(
|
|
"Salesforce/blip2-opt-2.7b",
|
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
|
).to(device)
|
|
|
|
|
|
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
|
|
|
|
|
current_image = {"image": None}
|
|
|
|
def load_image(image):
|
|
current_image["image"] = image
|
|
return "Image uploaded. Now ask a question via voice."
|
|
|
|
def ask_question(audio):
|
|
if current_image["image"] is None:
|
|
return "Please upload an image first.", None
|
|
|
|
|
|
question = whisper_pipe(audio)["text"]
|
|
|
|
|
|
inputs = processor(current_image["image"], question, return_tensors="pt").to(device, torch.float16 if device == "cuda" else torch.float32)
|
|
output = model.generate(**inputs, max_new_tokens=100)
|
|
answer = processor.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
|
tts = gTTS(answer)
|
|
tts.save("answer.mp3")
|
|
|
|
return f"Q: {question}\nA: {answer}", "answer.mp3"
|
|
|
|
|
|
with gr.Blocks() as app:
|
|
gr.Markdown("# 🧠🖼️ Ask-the-Image with BLIP-2 + Whisper + gTTS")
|
|
with gr.Row():
|
|
image_input = gr.Image(type="pil", label="Upload Image")
|
|
image_status = gr.Textbox(label="Status", interactive=False)
|
|
|
|
audio_input = gr.Audio(source="microphone", type="filepath", label="Ask a Question (voice)")
|
|
output_text = gr.Textbox(label="Q&A", lines=4)
|
|
output_audio = gr.Audio(label="Answer (speech)")
|
|
|
|
image_input.change(fn=load_image, inputs=image_input, outputs=image_status)
|
|
audio_input.change(fn=ask_question, inputs=audio_input, outputs=[output_text, output_audio])
|
|
|
|
app.launch()
|
|
|