import os
import PIL.Image
import torch
import numpy as np
from janus.utils.io import load_pil_images
from model_loader import load_model_and_processor
from janus.models import MultiModalityCausalLM, VLChatProcessor
from functools import lru_cache
import spaces

def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgpt, batch_size=16):
    uncond_input_ids = torch.full((1, input_embeds.shape[1]), 
                                  vl_chat_processor.pad_id, 
                                  dtype=torch.long, 
                                  device=input_embeds.device)
    uncond_input_ids[:, 0] = input_embeds.shape[1] - 1
    uncond_input_ids[:, -1] = vl_chat_processor.tokenizer.eos_token_id
    
    uncond_input_embeds = mmgpt.language_model.get_input_embeddings()(uncond_input_ids)
    uncond_input_embeds[:, -1, :] = input_embeds[:, -1, :]

    cond_input_embeds = input_embeds.repeat(batch_size, 1, 1)
    uncond_input_embeds = uncond_input_embeds.repeat(batch_size, 1, 1)
    
    combined_input_embeds = torch.stack([cond_input_embeds, uncond_input_embeds], dim=1)
    combined_input_embeds = combined_input_embeds.view(batch_size * 2, -1, input_embeds.shape[-1])
    
    return combined_input_embeds

@torch.inference_mode()
def generate(
    mmgpt: MultiModalityCausalLM,
    vl_chat_processor: VLChatProcessor,
    inputs_embeds,
    temperature: float = 1,
    parallel_size: int = 1,
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
    img_size: int = 384,
    patch_size: int = 16,
):
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()

    inputs_embeds = prepare_classifier_free_guidance_input(inputs_embeds, vl_chat_processor, mmgpt, parallel_size)

    for i in range(image_token_num_per_image):
        outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
        hidden_states = outputs.last_hidden_state
        
        logits = mmgpt.gen_head(hidden_states[:, -1, :])

        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]
        
        logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)

        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, i] = next_token.squeeze(dim=-1)

        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
        inputs_embeds = img_embeds.unsqueeze(dim=1)

    dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)

    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    generated_images = []
    for i in range(parallel_size):
        generated_images.append(PIL.Image.fromarray(visual_img[i]))

    return generated_images

@lru_cache(maxsize=1)
def get_start_tag_embed(vl_gpt, vl_chat_processor):
    with torch.no_grad():
        return vl_gpt.language_model.get_input_embeddings()(
            vl_chat_processor.tokenizer.encode(vl_chat_processor.image_start_tag, add_special_tokens=False, return_tensors="pt").to(vl_gpt.device)
        )
    
@spaces.GPU
def process_and_generate(input_image, prompt, num_images=4, cfg_weight=5):
    # Set the model path
    model_path = "deepseek-ai/Janus-1.3B"

    # Load the model and processor
    vl_gpt, vl_chat_processor = load_model_and_processor(model_path)
    
    start_tag_embed = get_start_tag_embed(vl_gpt, vl_chat_processor)

    nl = '\n'
    conversation = [
        {
            "role": "User",
            "content": f"<image_placeholder>{nl + prompt if prompt else ''}",
            "images": [input_image],
        },
        {"role": "Assistant", "content": ""},
    ]

    pil_images = load_pil_images(conversation)
    prepare_inputs = vl_chat_processor(
        conversations=conversation, images=pil_images, force_batchify=True
    ).to(vl_gpt.device)

    with torch.no_grad():
        inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

    inputs_embeds = torch.cat((inputs_embeds, start_tag_embed), dim=1)

    generated_images = generate(
        vl_gpt,
        vl_chat_processor,
        inputs_embeds,
        parallel_size=num_images,
        cfg_weight=cfg_weight
    )

    return generated_images