Spaces:
Running
Running
File size: 5,098 Bytes
6f3dcb0 d0ac7e9 6f3dcb0 d0ac7e9 6f3dcb0 d0ac7e9 6f3dcb0 f3d7c7b 6f3dcb0 d0ac7e9 902b033 d0ac7e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import torch
import torchvision
import huggingface_hub
from torchvision.transforms import InterpolationMode
from network.models.facexformer import FaceXFormer
from dataclasses import dataclass
import numpy as np
# import mediapipe as mp
# import cv2
# device = "cuda:0"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float32
weights_path = "ckpts/model.pt"
# weights_path = "ckpts/pytorch_model.bin"
# face_model_path = "ckpts/blaze_face_short_range.tflite"
# import mediapipe as mp
# BaseOptions = mp.tasks.BaseOptions
# FaceDetector = mp.tasks.vision.FaceDetector
# FaceDetectorOptions = mp.tasks.vision.FaceDetectorOptions
# FaceDetectorResult = mp.tasks.vision.FaceDetectorResult
# VisionRunningMode = mp.tasks.vision.RunningMode
# options = FaceDetectorOptions(
# base_options=BaseOptions(model_asset_path=face_model_path),
# running_mode=VisionRunningMode.LIVE_STREAM,
# )
# face_detector = FaceDetector.create_from_options(options)
transforms_image = torchvision.transforms.Compose(
[
torchvision.transforms.ToPILImage(),
torchvision.transforms.Resize(
size=(224, 224), interpolation=InterpolationMode.BICUBIC
),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
def load_model(weights_path):
model = FaceXFormer().to(device)
if not os.path.exists(weights_path):
huggingface_hub.hf_hub_download(
"kartiknarayan/facexformer",
"ckpts/model.pt",
repo_type="model",
local_dir=".",
)
checkpoint = torch.load(weights_path, map_location=device)
# model.load_state_dict(checkpoint)
model.load_state_dict(checkpoint["state_dict_backbone"])
model = model.eval()
model = model.to(dtype=dtype)
# model = torch.compile(model, mode="reduce-overhead")
return model
model = load_model(weights_path)
def adjust_bbox(
x_min, y_min, x_max, y_max, image_width, image_height, margin_percentage=50
):
width = x_max - x_min
height = y_max - y_min
increase_width = width * (margin_percentage / 100.0) / 2
increase_height = height * (margin_percentage / 100.0) / 2
x_min_adjusted = int(max(0, x_min - increase_width))
y_min_adjusted = int(max(0, y_min - increase_height))
x_max_adjusted = int(min(image_width, x_max + increase_width))
y_max_adjusted = int(min(image_height, y_max + increase_height))
return x_min_adjusted, y_min_adjusted, x_max_adjusted, y_max_adjusted
def denorm_points(points, h, w, align_corners=False):
if align_corners:
denorm_points = (
(points + 1) / 2 * torch.tensor([w - 1, h - 1]).to(points).view(1, 1, 2)
)
else:
denorm_points = (
(points + 1) * torch.tensor([w, h]).to(points).view(1, 1, 2) - 1
) / 2
return denorm_points
@dataclass
class BoundingBox:
x_min: int
y_min: int
x_max: int
y_max: int
@dataclass
class FaceImg:
image: np.ndarray
x_min: int
y_min: int
def get_faces_img(img: np.ndarray, boxes: list[BoundingBox]):
if boxes is None or len(boxes) == 0:
return []
results: list[FaceImg] = []
for box in boxes:
x_min, y_min, x_max, y_max = box.x_min, box.y_min, box.x_max, box.y_max
# Padding
x_min, y_min, x_max, y_max = adjust_bbox(
x_min, y_min, x_max, y_max, img.shape[1], img.shape[0]
)
image = img[y_min:y_max, x_min:x_max]
results.append(FaceImg(image, int(x_min), int(y_min)))
return results
@dataclass
class Face:
image: torch.Tensor
x_min: int
y_min: int
original_w: int
original_h: int
def get_faces(img: np.ndarray, boxes: list[BoundingBox]):
images = get_faces_img(img, boxes)
images = [
Face(
transforms_image(face_image.image),
face_image.x_min,
face_image.y_min,
face_image.image.shape[1],
face_image.image.shape[0],
)
for face_image in images
]
return images
def get_landmarks(faces: list[Face]):
if len(faces) == 0:
return []
images = torch.stack([face.image for face in faces]).to(device=device, dtype=dtype)
tasks = torch.tensor([1] * len(faces), device=device, dtype=dtype)
with torch.inference_mode():
# with torch.amp.autocast("cuda"):
(
batch_landmarks,
headposes,
attributes,
visibilities,
ages,
geders,
races,
segs,
) = model.predict(images, None, tasks)
batch_denormed = [
denorm_points(landmarks, face.original_h, face.original_w)[0]
for landmarks, face in zip(batch_landmarks.view(-1, 68, 2), faces)
]
results = []
for landmarks, face in zip(batch_denormed, faces):
results.append(
[(int(x + face.x_min), int(y + face.y_min)) for x, y in landmarks]
)
return results
|