File size: 7,238 Bytes
93f7efb
98a0e3b
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
98a0e3b
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a0e3b
93f7efb
 
 
 
 
 
 
 
98a0e3b
 
93f7efb
 
98a0e3b
 
 
 
 
 
 
 
 
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a0e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f7efb
98a0e3b
93f7efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98a0e3b
 
 
 
 
 
 
93f7efb
98a0e3b
 
 
 
93f7efb
 
98a0e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f7efb
 
 
 
 
 
98a0e3b
93f7efb
 
98a0e3b
93f7efb
98a0e3b
93f7efb
98a0e3b
 
 
93f7efb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import gc
import sys

import torch

import json
import numpy as np
from omegaconf import OmegaConf

from codeclm.trainer.codec_song_pl import CodecLM_PL
from codeclm.models import CodecLM
from codeclm.models import builders

from separator import Separator
from codeclm.utils.offload_profiler import OffloadProfiler, OffloadParamParse


class LeVoInference(torch.nn.Module):
    def __init__(self, ckpt_path):
        super().__init__()

        torch.backends.cudnn.enabled = False 
        OmegaConf.register_new_resolver("eval", lambda x: eval(x))
        OmegaConf.register_new_resolver("concat", lambda *x: [xxx for xx in x for xxx in xx])
        OmegaConf.register_new_resolver("get_fname", lambda: 'default')
        OmegaConf.register_new_resolver("load_yaml", lambda x: list(OmegaConf.load(x)))

        cfg_path = os.path.join(ckpt_path, 'config.yaml')
        self.pt_path = os.path.join(ckpt_path, 'model.pt')

        self.cfg = OmegaConf.load(cfg_path)
        self.cfg.mode = 'inference'
        self.max_duration = self.cfg.max_dur

        self.default_params = dict(
            top_p = 0.0,
            record_tokens = True,
            record_window = 50,
            extend_stride = 5,
            duration = self.max_duration,
        )


    def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "mixed", params = dict()):
        if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
            separator = Separator()
            audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
            audio_tokenizer = audio_tokenizer.eval().cuda()
            pmt_wav, vocal_wav, bgm_wav = separator.run(prompt_audio_path)
            pmt_wav = pmt_wav.cuda()
            vocal_wav = vocal_wav.cuda()
            bgm_wav = bgm_wav.cuda()
            with torch.no_grad():
                pmt_wav, _ = audio_tokenizer.encode(pmt_wav)
            del audio_tokenizer
            del separator
            torch.cuda.empty_cache()

            seperate_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
            seperate_tokenizer = seperate_tokenizer.eval().cuda()
            with torch.no_grad():
                vocal_wav, bgm_wav = seperate_tokenizer.encode(vocal_wav, bgm_wav)
            del seperate_tokenizer
            melody_is_wav = False
            torch.cuda.empty_cache()
        elif genre is not None and auto_prompt_path is not None:
            auto_prompt = torch.load(auto_prompt_path)
            merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
            if genre == "Auto": 
                prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
            else:
                prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
            pmt_wav = prompt_token[:,[0],:]
            vocal_wav = prompt_token[:,[1],:]
            bgm_wav = prompt_token[:,[2],:]
            melody_is_wav = False
        else:
            pmt_wav = None
            vocal_wav = None
            bgm_wav = None
            melody_is_wav = True

        audiolm = builders.get_lm_model(self.cfg)
        checkpoint = torch.load(self.pt_path, map_location='cpu')
        audiolm_state_dict = {k.replace('audiolm.', ''): v for k, v in checkpoint.items() if k.startswith('audiolm')}
        audiolm.load_state_dict(audiolm_state_dict, strict=False)
        audiolm = audiolm.eval()

        offload_audiolm = True if 'offload' in self.cfg.keys() and 'audiolm' in self.cfg.offload else False
        if offload_audiolm:
            audiolm_offload_param = OffloadParamParse.parse_config(audiolm, self.cfg.offload.audiolm)
            audiolm_offload_param.show()
            offload_profiler = OffloadProfiler(device_index=0, **(audiolm_offload_param.init_param_dict()))
            offload_profiler.offload_layer(**(audiolm_offload_param.offload_layer_param_dict()))
            offload_profiler.clean_cache_wrapper(**(audiolm_offload_param.clean_cache_param_dict()))
        else:
            audiolm = audiolm.cuda().to(torch.float16)

        model = CodecLM(name = "tmp",
            lm = audiolm,
            audiotokenizer = None,
            max_duration = self.max_duration,
            seperate_tokenizer = None,
        )
        params = {**self.default_params, **params}
        model.set_generation_params(**params)

        generate_inp = {
            'lyrics': [lyric.replace("  ", " ")],
            'descriptions': [description],
            'melody_wavs': pmt_wav,
            'vocal_wavs': vocal_wav,
            'bgm_wavs': bgm_wav,
            'melody_is_wav': melody_is_wav,
        }

        with torch.autocast(device_type="cuda", dtype=torch.float16):
            with torch.no_grad():
                tokens = model.generate(**generate_inp, return_tokens=True)
                if offload_audiolm:
                    offload_profiler.reset_empty_cache_mem_line()
        offload_profiler.stop()
        del offload_profiler
        del audiolm_offload_param
        del model
        audiolm = audiolm.cpu()
        del audiolm
        del checkpoint
        gc.collect()
        torch.cuda.empty_cache()

        seperate_tokenizer = builders.get_audio_tokenizer_model_cpu(self.cfg.audio_tokenizer_checkpoint_sep, self.cfg)
        device = "cuda:0"
        seperate_tokenizer.model.device = device
        seperate_tokenizer.model.vae = seperate_tokenizer.model.vae.to(device)
        seperate_tokenizer.model.model.device = torch.device(device)
        seperate_tokenizer = seperate_tokenizer.eval()

        offload_wav_tokenizer_diffusion =  True if 'offload' in self.cfg.keys() and 'wav_tokenizer_diffusion' in self.cfg.offload else False
        if offload_wav_tokenizer_diffusion:
            sep_offload_param = OffloadParamParse.parse_config(seperate_tokenizer, self.cfg.offload.wav_tokenizer_diffusion)
            sep_offload_param.show()
            sep_offload_profiler = OffloadProfiler(device_index=0, **(sep_offload_param.init_param_dict()))
            sep_offload_profiler.offload_layer(**(sep_offload_param.offload_layer_param_dict()))
            sep_offload_profiler.clean_cache_wrapper(**(sep_offload_param.clean_cache_param_dict()))
        else:
            seperate_tokenizer.model.model = seperate_tokenizer.model.model.to(device)

        model = CodecLM(name = "tmp",
            lm = None,
            audiotokenizer = None,
            max_duration = self.max_duration,
            seperate_tokenizer = seperate_tokenizer,
        )

        with torch.no_grad():
            if melody_is_wav:
                wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type, chunked=True)
            else:
                wav_seperate = model.generate_audio(tokens, gen_type=gen_type, chunked=True)

        if offload_wav_tokenizer_diffusion:
            sep_offload_profiler.reset_empty_cache_mem_line()
            sep_offload_profiler.stop()
        torch.cuda.empty_cache()

        return wav_seperate[0]