File size: 20,085 Bytes
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from dataclasses import dataclass
from typing import Optional, Tuple
from copy import deepcopy

import torch
import torch.nn as nn
from transformers import AutoModelForVision2Seq, AutoTokenizer

from transformers.utils import ModelOutput


def use_default(value, default):
    """Utility: return value if not None, else default."""
    return value if value is not None else default

# Prompt templates for different models and tasks
PROMPT_TEMPLATE_ENCODE = (
    "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
    "quantity, text, spatial relationships of the objects and background:<|eot_id|>"
    "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_V2 = (
    "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, "
    "quantity, text, spatial relationships of the objects and background:<|im_end|>\n"
    "<|im_start|>user\n{}<|im_end|>"
)

NEGATIVE_PROMPT = (
    "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, "
    "bad hands, bad teeth, bad eyes, bad limbs, distortion"
)

PROMPT_TEMPLATE = {
    "dit-llm-encode": {
        "template": PROMPT_TEMPLATE_ENCODE,
        "crop_start": 36,
    },
    "dit-llm-encode-v2": {
        "template": PROMPT_TEMPLATE_ENCODE_V2,
        "crop_start": 34,
    },
}

def load_text_encoder(
    text_encoder_type,
    text_encoder_precision=None,
    text_encoder_path=None,
    infer_mode="encoder",
    logger=None,
    device=None
):
    """
    Load a text encoder model from pretrained weights.

    Args:
        text_encoder_type (str): Type of text encoder.
        text_encoder_precision (str, optional): Precision for model weights.
        text_encoder_path (str, optional): Path to pretrained weights.
        infer_mode (str): "encoder" or "decoder".
        logger (logging.Logger, optional): Logger for info.
        device (torch.device, optional): Device to move model to.

    Returns:
        model (nn.Module): Loaded text encoder.
        model_path (str): Path to model.
    """
    if logger is not None:
        logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")

    if text_encoder_type == 'llm':
        text_encoder = AutoModelForVision2Seq.from_pretrained(
            text_encoder_path,
            torch_dtype="auto"
        )
    else:
        raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")

    text_encoder.requires_grad_(False)

    if logger is not None:
        logger.info(f"Text encoder to dtype: {text_encoder.dtype}")

    if device is not None:
        text_encoder = text_encoder.to(device)

    return text_encoder, text_encoder_path

def load_tokenizer(
    tokenizer_type,
    tokenizer_path=None,
    padding_side="right",
    logger=None
):
    """
    Load a tokenizer from pretrained weights.

    Args:
        tokenizer_type (str): Type of tokenizer.
        tokenizer_path (str, optional): Path to pretrained tokenizer.
        padding_side (str): Padding side for tokenizer.
        logger (logging.Logger, optional): Logger for info.

    Returns:
        tokenizer: Loaded tokenizer.
        tokenizer_path (str): Path to tokenizer.
    """
    if logger is not None:
        logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")

    if tokenizer_type == "llm":
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_path, use_fast=False, padding_side=padding_side, trust_remote_code=True)
    else:
        raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")

    return tokenizer, tokenizer_path

@dataclass
class TextEncoderModelOutput(ModelOutput):
    """
    Output for text encoder models.

    Args:
        hidden_state (torch.FloatTensor): Output hidden states of the last layer.
        attention_mask (torch.LongTensor, optional): Attention mask for valid tokens.
        hidden_states_list (tuple(torch.FloatTensor), optional): All hidden states if requested.
        text_outputs (list, optional): Decoded texts if requested.
    """
    hidden_state: torch.FloatTensor = None
    attention_mask: Optional[torch.LongTensor] = None
    hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
    text_outputs: Optional[list] = None

class TextEncoder(nn.Module):
    """
    TextEncoder wraps a pretrained text encoder and tokenizer for flexible text encoding.

    Args:
        text_encoder_type (str): Type of text encoder.
        max_length (int): Maximum sequence length.
        text_encoder_precision (str, optional): Precision for model weights.
        text_encoder_path (str, optional): Path to pretrained weights.
        tokenizer_type (str, optional): Type of tokenizer.
        tokenizer_path (str, optional): Path to pretrained tokenizer.
        output_key (str, optional): Output key for model output.
        use_attention_mask (bool): Whether to use attention mask.
        infer_mode (str): "encoder" or "decoder".
        input_max_length (int, optional): Max input length.
        prompt_template (dict, optional): Prompt template for image.
        prompt_template_video (dict, optional): Prompt template for video.
        hidden_state_skip_layer (int, optional): Skip layers from last for hidden state.
        apply_final_norm (bool): Whether to apply final layer norm.
        reproduce (bool): Deterministic output if True.
        logger (logging.Logger, optional): Logger for info.
        device (torch.device, optional): Device to move model to.
    """
    def __init__(
        self,
        text_encoder_type: str,
        max_length: int,
        text_encoder_precision: Optional[str] = None,
        text_encoder_path: Optional[str] = None,
        tokenizer_type: Optional[str] = None,
        tokenizer_path: Optional[str] = None,
        output_key: Optional[str] = None,
        use_attention_mask: bool = True,
        infer_mode: str = "encoder",
        input_max_length: Optional[int] = None,
        prompt_template: Optional[dict] = None,
        prompt_template_video: Optional[dict] = None,
        hidden_state_skip_layer: Optional[int] = None,
        apply_final_norm: bool = False,
        reproduce: bool = False,
        logger=None,
        device=None,
    ):
        super().__init__()
        self.text_encoder_type = text_encoder_type
        self.max_length = max_length
        self.precision = text_encoder_precision
        self.model_path = text_encoder_path
        self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
        self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
        self.use_attention_mask = use_attention_mask
        self.input_max_length = input_max_length if input_max_length is not None else max_length
        self.prompt_template = dict(prompt_template) if prompt_template is not None else None
        self.prompt_template_video = dict(prompt_template_video) if prompt_template_video is not None else None
        self.hidden_state_skip_layer = hidden_state_skip_layer
        self.apply_final_norm = apply_final_norm
        self.infer_mode = infer_mode
        self.reproduce = reproduce
        self.logger = logger

        self.use_template = self.prompt_template is not None
        if self.use_template:
            assert isinstance(self.prompt_template, dict) and "template" in self.prompt_template, (
                f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
            )
            if self.prompt_template_video is not None:
                assert isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video, (
                    f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
                )
            assert '{}' in str(self.prompt_template["template"]), (
                "`prompt_template['template']` must contain a placeholder `{}` for the input text, "
                f"got {self.prompt_template['template']}"
            )

        if infer_mode == "decoder":
            assert text_encoder_type in ["llava-llama-3-8b"], (
                f"Unsupported text encoder type for infer_mode='decoder': {text_encoder_type}"
            )
            assert self.prompt_template is not None and hidden_state_skip_layer is not None, (
                f"`prompt_template` and `hidden_state_skip_layer` must be provided for infer_mode='decoder', "
                f"got prompt_template={self.prompt_template}, hidden_state_skip_layer={self.hidden_state_skip_layer}"
            )

        if "t5" in text_encoder_type:
            self.output_key = output_key or "last_hidden_state"
        elif "clip" in text_encoder_type:
            self.output_key = output_key or "pooler_output"
        elif any(x in text_encoder_type for x in ["llm"]):
            self.output_key = output_key or ("last_hidden_state" if infer_mode == "encoder" else None)
        else:
            raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")

        self.model, self.model_path = load_text_encoder(
            text_encoder_type=self.text_encoder_type,
            text_encoder_precision=self.precision,
            text_encoder_path=self.model_path,
            infer_mode=self.infer_mode,
            logger=self.logger,
            device=device
        )
        self.dtype = self.model.dtype
        self.device = self.model.device

        padding_side = "right" if self.infer_mode == "encoder" else "left"
        self.tokenizer, self.tokenizer_path = load_tokenizer(
            tokenizer_type=self.tokenizer_type,
            tokenizer_path=self.tokenizer_path,
            padding_side=padding_side,
            logger=self.logger
        )

    def __repr__(self):
        return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"

    @staticmethod
    def apply_text_to_template(text, template, prevent_empty_text=True):
        """
        Apply text to a prompt template.

        Args:
            text (str): Input text.
            template (str or list): Template string or list of chat conversation.
            prevent_empty_text (bool): If True, prevent empty user text by adding a space.

        Returns:
            str or list: Text with template applied.
        """
        if isinstance(template, str):
            return template.format(text)
        elif isinstance(template, list):
            conversation = deepcopy(template)
            for message in conversation:
                if '{}' in message.get("content", ""):
                    filled_text = message["content"].format(text)
                    if prevent_empty_text and len(filled_text) == 0:
                        filled_text = ' '
                    message["content"] = filled_text
                    break  # Only one placeholder per conversation
            return conversation
        else:
            raise TypeError(f"Unsupported template type: {type(template)}")

    def text2tokens(self, text, data_type='image'):
        """
        Tokenize the input text, optionally applying a prompt template.

        Args:
            text (str or list): Input text.
            data_type (str): 'image' or 'video'.

        Returns:
            dict: Tokenized input.
        """
        tokenize_input_type = 'str'
        if self.use_template:
            if data_type == 'image':
                prompt_template = self.prompt_template["template"]
            elif data_type == 'video':
                prompt_template = self.prompt_template_video["template"]
            else:
                raise ValueError(f"Unsupported data type: {data_type}")
            if isinstance(text, (list, tuple)):
                text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
                if isinstance(text[0], list):
                    tokenize_input_type = 'list'
            elif isinstance(text, str):
                text = self.apply_text_to_template(text, prompt_template)
                if isinstance(text, list):
                    tokenize_input_type = 'list'
            else:
                raise TypeError(f"Unsupported text type: {type(text)}")
        kwargs = dict(truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt")
        if tokenize_input_type == 'str':
            return self.tokenizer(
                text,
                return_length=False,
                return_overflowing_tokens=False,
                return_attention_mask=True,
                **kwargs,
            )
        elif tokenize_input_type == 'list':
            return self.tokenizer.apply_chat_template(
                text,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                **kwargs,
            )
        else:
            raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")

    def encode(
        self,
        batch_encoding,
        use_attention_mask=None,
        output_hidden_states=False,
        do_sample=None,
        hidden_state_skip_layer=None,
        return_texts=False,
        data_type='image',
        device=None
    ):
        """
        Encode tokenized input using the text encoder.

        Args:
            batch_encoding (dict): Batch encoding from tokenizer.
            use_attention_mask (bool, optional): Whether to use attention mask.
            output_hidden_states (bool): Whether to output all hidden states.
            do_sample (bool, optional): Whether to sample from the model (for decoder-only LLMs).
            hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
            return_texts (bool): Whether to return decoded texts.
            data_type (str): 'image' or 'video'.
            device (torch.device, optional): Device to use.

        Returns:
            TextEncoderModelOutput: Encoded output.
        """
        use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
        hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
        do_sample = use_default(do_sample, not self.reproduce)

        if self.infer_mode == "encoder":
            attention_mask = batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None
            if 'Gemma2' in self.text_encoder_type:
                input_ids = batch_encoding["input_ids"].to(self.model.device)
                _, inputs_embeds, labels, attention_mask = self.model.merge_multimodal(
                    text_input_ids=input_ids,
                    text_attention_masks=attention_mask,
                    text_labels=None,
                    pixel_values=[None]
                )
                outputs = self.model.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask)
            else:
                outputs = self.model(
                    input_ids=batch_encoding["input_ids"].to(self.model.device),
                    attention_mask=attention_mask,
                    output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
                )
            if hidden_state_skip_layer is not None:
                last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
                # Apply final norm for intermediate layers if requested
                if hidden_state_skip_layer > 0 and self.apply_final_norm:
                    last_hidden_state = self.model.final_layer_norm(last_hidden_state)
            else:
                last_hidden_state = outputs[self.output_key]

            # Remove hidden states of instruction tokens, only keep prompt tokens.
            if self.use_template:
                if data_type == 'image':
                    crop_start = self.prompt_template.get("crop_start", -1)
                elif data_type == 'video':
                    crop_start = self.prompt_template_video.get("crop_start", -1)
                else:
                    raise ValueError(f"Unsupported data type: {data_type}")
                if crop_start > 0:
                    last_hidden_state = last_hidden_state[:, crop_start:]
                    attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None

            if output_hidden_states:
                return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
            return TextEncoderModelOutput(last_hidden_state, attention_mask)

        elif self.infer_mode == "decoder":
            # Remove leading padding tokens
            input_max_valid_tokens = batch_encoding["attention_mask"].sum(dim=1).max().item()
            if input_max_valid_tokens < batch_encoding["attention_mask"].shape[1]:
                batch_encoding = {
                    "input_ids": batch_encoding["input_ids"][:, -input_max_valid_tokens:],
                    "attention_mask": batch_encoding["attention_mask"][:, -input_max_valid_tokens:],
                }

            # Generate text from the model.
            outputs = self.model.generate(
                input_ids=batch_encoding["input_ids"].to(self.model.device),
                attention_mask=batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None,
                max_new_tokens=self.max_length,
                do_sample=do_sample,
                return_dict_in_generate=True,
                output_hidden_states=True,
                stop_strings='<|eot_id|>', tokenizer=self.tokenizer,
                pad_token_id=self.tokenizer.eos_token_id,
            )

            # Concatenate hidden states from all generated tokens.
            hidden_states = torch.cat([
                per_token_hidden_states[-(hidden_state_skip_layer + 1)]
                for per_token_hidden_states in outputs.hidden_states[1:]
            ], dim=1)
            if self.apply_final_norm:
                hidden_states = self.model.final_layer_norm(hidden_states)

            # Make sequence mask from output sequences
            output_max_valid_tokens = hidden_states.shape[1]
            attention_mask = (outputs.sequences[:, -output_max_valid_tokens - 1:-1] != self.tokenizer.eos_token_id).long()

            if return_texts:
                text_outputs = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
                return TextEncoderModelOutput(hidden_states, attention_mask, None, text_outputs)
            else:
                return TextEncoderModelOutput(hidden_states, attention_mask)
        else:
            raise ValueError(f"Unsupported text encoder infer mode: {self.infer_mode}")

    def forward(
        self,
        text,
        use_attention_mask=None,
        output_hidden_states=False,
        do_sample=False,
        hidden_state_skip_layer=None,
        return_texts=False
    ):
        """
        Forward pass: encode text to hidden states.

        Args:
            text (str or list): Input text.
            use_attention_mask (bool, optional): Whether to use attention mask.
            output_hidden_states (bool): Whether to output all hidden states.
            do_sample (bool): Whether to sample from the model (for decoder-only LLMs).
            hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
            return_texts (bool): Whether to return decoded texts.

        Returns:
            TextEncoderModelOutput: Encoded output.
        """
        batch_encoding = self.text2tokens(text)
        return self.encode(
            batch_encoding,
            use_attention_mask=use_attention_mask,
            output_hidden_states=output_hidden_states,
            do_sample=do_sample,
            hidden_state_skip_layer=hidden_state_skip_layer,
            return_texts=return_texts
        )