Spaces:
Running
on
A100
Running
on
A100
File size: 20,085 Bytes
43c5292 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
from dataclasses import dataclass
from typing import Optional, Tuple
from copy import deepcopy
import torch
import torch.nn as nn
from transformers import AutoModelForVision2Seq, AutoTokenizer
from transformers.utils import ModelOutput
def use_default(value, default):
"""Utility: return value if not None, else default."""
return value if value is not None else default
# Prompt templates for different models and tasks
PROMPT_TEMPLATE_ENCODE = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
)
PROMPT_TEMPLATE_ENCODE_V2 = (
"<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|im_end|>\n"
"<|im_start|>user\n{}<|im_end|>"
)
NEGATIVE_PROMPT = (
"Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, "
"bad hands, bad teeth, bad eyes, bad limbs, distortion"
)
PROMPT_TEMPLATE = {
"dit-llm-encode": {
"template": PROMPT_TEMPLATE_ENCODE,
"crop_start": 36,
},
"dit-llm-encode-v2": {
"template": PROMPT_TEMPLATE_ENCODE_V2,
"crop_start": 34,
},
}
def load_text_encoder(
text_encoder_type,
text_encoder_precision=None,
text_encoder_path=None,
infer_mode="encoder",
logger=None,
device=None
):
"""
Load a text encoder model from pretrained weights.
Args:
text_encoder_type (str): Type of text encoder.
text_encoder_precision (str, optional): Precision for model weights.
text_encoder_path (str, optional): Path to pretrained weights.
infer_mode (str): "encoder" or "decoder".
logger (logging.Logger, optional): Logger for info.
device (torch.device, optional): Device to move model to.
Returns:
model (nn.Module): Loaded text encoder.
model_path (str): Path to model.
"""
if logger is not None:
logger.info(f"Loading text encoder model ({text_encoder_type}) from: {text_encoder_path}")
if text_encoder_type == 'llm':
text_encoder = AutoModelForVision2Seq.from_pretrained(
text_encoder_path,
torch_dtype="auto"
)
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
text_encoder.requires_grad_(False)
if logger is not None:
logger.info(f"Text encoder to dtype: {text_encoder.dtype}")
if device is not None:
text_encoder = text_encoder.to(device)
return text_encoder, text_encoder_path
def load_tokenizer(
tokenizer_type,
tokenizer_path=None,
padding_side="right",
logger=None
):
"""
Load a tokenizer from pretrained weights.
Args:
tokenizer_type (str): Type of tokenizer.
tokenizer_path (str, optional): Path to pretrained tokenizer.
padding_side (str): Padding side for tokenizer.
logger (logging.Logger, optional): Logger for info.
Returns:
tokenizer: Loaded tokenizer.
tokenizer_path (str): Path to tokenizer.
"""
if logger is not None:
logger.info(f"Loading tokenizer ({tokenizer_type}) from: {tokenizer_path}")
if tokenizer_type == "llm":
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, use_fast=False, padding_side=padding_side, trust_remote_code=True)
else:
raise ValueError(f"Unsupported tokenizer type: {tokenizer_type}")
return tokenizer, tokenizer_path
@dataclass
class TextEncoderModelOutput(ModelOutput):
"""
Output for text encoder models.
Args:
hidden_state (torch.FloatTensor): Output hidden states of the last layer.
attention_mask (torch.LongTensor, optional): Attention mask for valid tokens.
hidden_states_list (tuple(torch.FloatTensor), optional): All hidden states if requested.
text_outputs (list, optional): Decoded texts if requested.
"""
hidden_state: torch.FloatTensor = None
attention_mask: Optional[torch.LongTensor] = None
hidden_states_list: Optional[Tuple[torch.FloatTensor, ...]] = None
text_outputs: Optional[list] = None
class TextEncoder(nn.Module):
"""
TextEncoder wraps a pretrained text encoder and tokenizer for flexible text encoding.
Args:
text_encoder_type (str): Type of text encoder.
max_length (int): Maximum sequence length.
text_encoder_precision (str, optional): Precision for model weights.
text_encoder_path (str, optional): Path to pretrained weights.
tokenizer_type (str, optional): Type of tokenizer.
tokenizer_path (str, optional): Path to pretrained tokenizer.
output_key (str, optional): Output key for model output.
use_attention_mask (bool): Whether to use attention mask.
infer_mode (str): "encoder" or "decoder".
input_max_length (int, optional): Max input length.
prompt_template (dict, optional): Prompt template for image.
prompt_template_video (dict, optional): Prompt template for video.
hidden_state_skip_layer (int, optional): Skip layers from last for hidden state.
apply_final_norm (bool): Whether to apply final layer norm.
reproduce (bool): Deterministic output if True.
logger (logging.Logger, optional): Logger for info.
device (torch.device, optional): Device to move model to.
"""
def __init__(
self,
text_encoder_type: str,
max_length: int,
text_encoder_precision: Optional[str] = None,
text_encoder_path: Optional[str] = None,
tokenizer_type: Optional[str] = None,
tokenizer_path: Optional[str] = None,
output_key: Optional[str] = None,
use_attention_mask: bool = True,
infer_mode: str = "encoder",
input_max_length: Optional[int] = None,
prompt_template: Optional[dict] = None,
prompt_template_video: Optional[dict] = None,
hidden_state_skip_layer: Optional[int] = None,
apply_final_norm: bool = False,
reproduce: bool = False,
logger=None,
device=None,
):
super().__init__()
self.text_encoder_type = text_encoder_type
self.max_length = max_length
self.precision = text_encoder_precision
self.model_path = text_encoder_path
self.tokenizer_type = tokenizer_type if tokenizer_type is not None else text_encoder_type
self.tokenizer_path = tokenizer_path if tokenizer_path is not None else text_encoder_path
self.use_attention_mask = use_attention_mask
self.input_max_length = input_max_length if input_max_length is not None else max_length
self.prompt_template = dict(prompt_template) if prompt_template is not None else None
self.prompt_template_video = dict(prompt_template_video) if prompt_template_video is not None else None
self.hidden_state_skip_layer = hidden_state_skip_layer
self.apply_final_norm = apply_final_norm
self.infer_mode = infer_mode
self.reproduce = reproduce
self.logger = logger
self.use_template = self.prompt_template is not None
if self.use_template:
assert isinstance(self.prompt_template, dict) and "template" in self.prompt_template, (
f"`prompt_template` must be a dictionary with a key 'template', got {self.prompt_template}"
)
if self.prompt_template_video is not None:
assert isinstance(self.prompt_template_video, dict) and "template" in self.prompt_template_video, (
f"`prompt_template_video` must be a dictionary with a key 'template', got {self.prompt_template_video}"
)
assert '{}' in str(self.prompt_template["template"]), (
"`prompt_template['template']` must contain a placeholder `{}` for the input text, "
f"got {self.prompt_template['template']}"
)
if infer_mode == "decoder":
assert text_encoder_type in ["llava-llama-3-8b"], (
f"Unsupported text encoder type for infer_mode='decoder': {text_encoder_type}"
)
assert self.prompt_template is not None and hidden_state_skip_layer is not None, (
f"`prompt_template` and `hidden_state_skip_layer` must be provided for infer_mode='decoder', "
f"got prompt_template={self.prompt_template}, hidden_state_skip_layer={self.hidden_state_skip_layer}"
)
if "t5" in text_encoder_type:
self.output_key = output_key or "last_hidden_state"
elif "clip" in text_encoder_type:
self.output_key = output_key or "pooler_output"
elif any(x in text_encoder_type for x in ["llm"]):
self.output_key = output_key or ("last_hidden_state" if infer_mode == "encoder" else None)
else:
raise ValueError(f"Unsupported text encoder type: {text_encoder_type}")
self.model, self.model_path = load_text_encoder(
text_encoder_type=self.text_encoder_type,
text_encoder_precision=self.precision,
text_encoder_path=self.model_path,
infer_mode=self.infer_mode,
logger=self.logger,
device=device
)
self.dtype = self.model.dtype
self.device = self.model.device
padding_side = "right" if self.infer_mode == "encoder" else "left"
self.tokenizer, self.tokenizer_path = load_tokenizer(
tokenizer_type=self.tokenizer_type,
tokenizer_path=self.tokenizer_path,
padding_side=padding_side,
logger=self.logger
)
def __repr__(self):
return f"{self.text_encoder_type} ({self.precision} - {self.model_path})"
@staticmethod
def apply_text_to_template(text, template, prevent_empty_text=True):
"""
Apply text to a prompt template.
Args:
text (str): Input text.
template (str or list): Template string or list of chat conversation.
prevent_empty_text (bool): If True, prevent empty user text by adding a space.
Returns:
str or list: Text with template applied.
"""
if isinstance(template, str):
return template.format(text)
elif isinstance(template, list):
conversation = deepcopy(template)
for message in conversation:
if '{}' in message.get("content", ""):
filled_text = message["content"].format(text)
if prevent_empty_text and len(filled_text) == 0:
filled_text = ' '
message["content"] = filled_text
break # Only one placeholder per conversation
return conversation
else:
raise TypeError(f"Unsupported template type: {type(template)}")
def text2tokens(self, text, data_type='image'):
"""
Tokenize the input text, optionally applying a prompt template.
Args:
text (str or list): Input text.
data_type (str): 'image' or 'video'.
Returns:
dict: Tokenized input.
"""
tokenize_input_type = 'str'
if self.use_template:
if data_type == 'image':
prompt_template = self.prompt_template["template"]
elif data_type == 'video':
prompt_template = self.prompt_template_video["template"]
else:
raise ValueError(f"Unsupported data type: {data_type}")
if isinstance(text, (list, tuple)):
text = [self.apply_text_to_template(one_text, prompt_template) for one_text in text]
if isinstance(text[0], list):
tokenize_input_type = 'list'
elif isinstance(text, str):
text = self.apply_text_to_template(text, prompt_template)
if isinstance(text, list):
tokenize_input_type = 'list'
else:
raise TypeError(f"Unsupported text type: {type(text)}")
kwargs = dict(truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt")
if tokenize_input_type == 'str':
return self.tokenizer(
text,
return_length=False,
return_overflowing_tokens=False,
return_attention_mask=True,
**kwargs,
)
elif tokenize_input_type == 'list':
return self.tokenizer.apply_chat_template(
text,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
**kwargs,
)
else:
raise ValueError(f"Unsupported tokenize_input_type: {tokenize_input_type}")
def encode(
self,
batch_encoding,
use_attention_mask=None,
output_hidden_states=False,
do_sample=None,
hidden_state_skip_layer=None,
return_texts=False,
data_type='image',
device=None
):
"""
Encode tokenized input using the text encoder.
Args:
batch_encoding (dict): Batch encoding from tokenizer.
use_attention_mask (bool, optional): Whether to use attention mask.
output_hidden_states (bool): Whether to output all hidden states.
do_sample (bool, optional): Whether to sample from the model (for decoder-only LLMs).
hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
return_texts (bool): Whether to return decoded texts.
data_type (str): 'image' or 'video'.
device (torch.device, optional): Device to use.
Returns:
TextEncoderModelOutput: Encoded output.
"""
use_attention_mask = use_default(use_attention_mask, self.use_attention_mask)
hidden_state_skip_layer = use_default(hidden_state_skip_layer, self.hidden_state_skip_layer)
do_sample = use_default(do_sample, not self.reproduce)
if self.infer_mode == "encoder":
attention_mask = batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None
if 'Gemma2' in self.text_encoder_type:
input_ids = batch_encoding["input_ids"].to(self.model.device)
_, inputs_embeds, labels, attention_mask = self.model.merge_multimodal(
text_input_ids=input_ids,
text_attention_masks=attention_mask,
text_labels=None,
pixel_values=[None]
)
outputs = self.model.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask)
else:
outputs = self.model(
input_ids=batch_encoding["input_ids"].to(self.model.device),
attention_mask=attention_mask,
output_hidden_states=output_hidden_states or hidden_state_skip_layer is not None,
)
if hidden_state_skip_layer is not None:
last_hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)]
# Apply final norm for intermediate layers if requested
if hidden_state_skip_layer > 0 and self.apply_final_norm:
last_hidden_state = self.model.final_layer_norm(last_hidden_state)
else:
last_hidden_state = outputs[self.output_key]
# Remove hidden states of instruction tokens, only keep prompt tokens.
if self.use_template:
if data_type == 'image':
crop_start = self.prompt_template.get("crop_start", -1)
elif data_type == 'video':
crop_start = self.prompt_template_video.get("crop_start", -1)
else:
raise ValueError(f"Unsupported data type: {data_type}")
if crop_start > 0:
last_hidden_state = last_hidden_state[:, crop_start:]
attention_mask = attention_mask[:, crop_start:] if use_attention_mask else None
if output_hidden_states:
return TextEncoderModelOutput(last_hidden_state, attention_mask, outputs.hidden_states)
return TextEncoderModelOutput(last_hidden_state, attention_mask)
elif self.infer_mode == "decoder":
# Remove leading padding tokens
input_max_valid_tokens = batch_encoding["attention_mask"].sum(dim=1).max().item()
if input_max_valid_tokens < batch_encoding["attention_mask"].shape[1]:
batch_encoding = {
"input_ids": batch_encoding["input_ids"][:, -input_max_valid_tokens:],
"attention_mask": batch_encoding["attention_mask"][:, -input_max_valid_tokens:],
}
# Generate text from the model.
outputs = self.model.generate(
input_ids=batch_encoding["input_ids"].to(self.model.device),
attention_mask=batch_encoding["attention_mask"].to(self.model.device) if use_attention_mask else None,
max_new_tokens=self.max_length,
do_sample=do_sample,
return_dict_in_generate=True,
output_hidden_states=True,
stop_strings='<|eot_id|>', tokenizer=self.tokenizer,
pad_token_id=self.tokenizer.eos_token_id,
)
# Concatenate hidden states from all generated tokens.
hidden_states = torch.cat([
per_token_hidden_states[-(hidden_state_skip_layer + 1)]
for per_token_hidden_states in outputs.hidden_states[1:]
], dim=1)
if self.apply_final_norm:
hidden_states = self.model.final_layer_norm(hidden_states)
# Make sequence mask from output sequences
output_max_valid_tokens = hidden_states.shape[1]
attention_mask = (outputs.sequences[:, -output_max_valid_tokens - 1:-1] != self.tokenizer.eos_token_id).long()
if return_texts:
text_outputs = self.tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
return TextEncoderModelOutput(hidden_states, attention_mask, None, text_outputs)
else:
return TextEncoderModelOutput(hidden_states, attention_mask)
else:
raise ValueError(f"Unsupported text encoder infer mode: {self.infer_mode}")
def forward(
self,
text,
use_attention_mask=None,
output_hidden_states=False,
do_sample=False,
hidden_state_skip_layer=None,
return_texts=False
):
"""
Forward pass: encode text to hidden states.
Args:
text (str or list): Input text.
use_attention_mask (bool, optional): Whether to use attention mask.
output_hidden_states (bool): Whether to output all hidden states.
do_sample (bool): Whether to sample from the model (for decoder-only LLMs).
hidden_state_skip_layer (int, optional): Number of layers to skip from last for hidden state.
return_texts (bool): Whether to return decoded texts.
Returns:
TextEncoderModelOutput: Encoded output.
"""
batch_encoding = self.text2tokens(text)
return self.encode(
batch_encoding,
use_attention_mask=use_attention_mask,
output_hidden_states=output_hidden_states,
do_sample=do_sample,
hidden_state_skip_layer=hidden_state_skip_layer,
return_texts=return_texts
)
|