File size: 27,021 Bytes
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
from dataclasses import dataclass
from typing import Optional, Tuple

import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin
from diffusers.configuration_utils import register_to_config
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from torch import Tensor, nn
from torch.nn import Conv2d


class DiagonalGaussianDistribution:
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
        if parameters.ndim == 3:
            dim = 2  # (B, L, C)
        elif parameters.ndim == 5 or parameters.ndim == 4:
            dim = 1  # (B, C, T, H, W) / (B, C, H, W)
        else:
            raise NotImplementedError
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            zero_tensor = torch.zeros_like(self.mean, device=self.parameters.device, dtype=self.parameters.dtype)
            self.var = zero_tensor
            self.std = zero_tensor

    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
        sample = randn_tensor(
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
        )
        return self.mean + self.std * sample

    def kl(self, other: Optional["DiagonalGaussianDistribution"] = None) -> torch.Tensor:
        if self.deterministic:
            return torch.tensor([0.0], device=self.parameters.device, dtype=self.parameters.dtype)
        reduce_dim = list(range(1, self.mean.ndim))
        if other is None:
            return 0.5 * torch.sum(
                self.mean.pow(2) + self.var - 1.0 - self.logvar,
                dim=reduce_dim,
            )
        else:
            return 0.5 * torch.sum(
                (self.mean - other.mean).pow(2) / other.var
                + self.var / other.var
                - 1.0
                - self.logvar
                + other.logvar,
                dim=reduce_dim,
            )

    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = (1, 2, 3)) -> torch.Tensor:
        if self.deterministic:
            return torch.tensor([0.0], device=self.parameters.device, dtype=self.parameters.dtype)
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + (sample - self.mean).pow(2) / self.var,
            dim=dims,
        )

    def mode(self) -> torch.Tensor:
        return self.mean


@dataclass
class DecoderOutput(BaseOutput):
    """Output of the decoder with sample and optional posterior distribution."""
    sample: torch.FloatTensor
    posterior: Optional[DiagonalGaussianDistribution] = None


def swish(x: Tensor) -> Tensor:
    """Swish activation function: x * sigmoid(x)."""
    return x * torch.sigmoid(x)


def forward_with_checkpointing(module, *inputs, use_checkpointing=False):
    """
    Forward pass with optional gradient checkpointing for memory efficiency.

    Parameters
    ----------
    module : nn.Module
        The module to run.
    *inputs : Tensor
        Inputs to the module.
    use_checkpointing : bool
        Whether to use gradient checkpointing.
    """
    def create_custom_forward(module):
        def custom_forward(*inputs):
            return module(*inputs)
        return custom_forward

    if use_checkpointing:
        return torch.utils.checkpoint.checkpoint(create_custom_forward(module), *inputs, use_reentrant=False)
    else:
        return module(*inputs)


class AttnBlock(nn.Module):
    """Self-attention block for 3D tensors."""

    def __init__(self, in_channels: int):
        super().__init__()
        self.in_channels = in_channels
        self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.q = Conv2d(in_channels, in_channels, kernel_size=1)
        self.k = Conv2d(in_channels, in_channels, kernel_size=1)
        self.v = Conv2d(in_channels, in_channels, kernel_size=1)
        self.proj_out = Conv2d(in_channels, in_channels, kernel_size=1)

    def attention(self, x: Tensor) -> Tensor:
        x = self.norm(x)
        q = self.q(x)
        k = self.k(x)
        v = self.v(x)

        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b (h w) c").contiguous()
        k = rearrange(k, "b c h w -> b (h w) c").contiguous()
        v = rearrange(v, "b c h w -> b (h w) c").contiguous()

        x = nn.functional.scaled_dot_product_attention(q, k, v)
        return rearrange(x, "b (h w) c -> b c h w", h=h, w=w, c=c, b=b)

    def forward(self, x: Tensor) -> Tensor:
        return x + self.proj_out(self.attention(x))


class ResnetBlock(nn.Module):
    """
    Residual block with two convolutions and optional channel change.

    Parameters
    ----------
    in_channels : int
        Number of input channels.
    out_channels : int
        Number of output channels.
    """

    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.conv1 = Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
        self.conv2 = Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if self.in_channels != self.out_channels:
            self.nin_shortcut = Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x: Tensor) -> Tensor:
        h = x
        h = self.norm1(h)
        h = swish(h)
        h = self.conv1(h)
        h = self.norm2(h)
        h = swish(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            x = self.nin_shortcut(x)
        return x + h


class Downsample(nn.Module):
    """
    Downsampling block for spatial reduction.

    Parameters
    ----------
    in_channels : int
        Number of input channels.
    out_channels : int
        Number of output channels.
    """

    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        factor = 4
        assert out_channels % factor == 0

        self.conv = Conv2d(in_channels, out_channels // factor, kernel_size=3, stride=1, padding=1)
        self.group_size = factor * in_channels // out_channels

    def forward(self, x: Tensor) -> Tensor:
        h = self.conv(x)
        h = rearrange(h, "b c (h r1) (w r2) -> b (r1 r2 c) h w", r1=2, r2=2)
        shortcut = rearrange(x, "b c (h r1) (w r2) -> b (r1 r2 c) h w", r1=2, r2=2)

        B, C, H, W = shortcut.shape
        shortcut = shortcut.view(B, h.shape[1], self.group_size, H, W).mean(dim=2)
        return h + shortcut


class Upsample(nn.Module):
    """
    Upsampling block for spatial expansion.

    Parameters
    ----------
    in_channels : int
        Number of input channels.
    out_channels : int
        Number of output channels.
    """

    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        factor = 4
        self.conv = Conv2d(in_channels, out_channels * factor, kernel_size=3, stride=1, padding=1)
        self.repeats = factor * out_channels // in_channels

    def forward(self, x: Tensor) -> Tensor:
        h = self.conv(x)
        h = rearrange(h, "b (r1 r2 c) h w -> b c (h r1) (w r2)", r1=2, r2=2)
        shortcut = x.repeat_interleave(repeats=self.repeats, dim=1)
        shortcut = rearrange(shortcut, "b (r1 r2 c) h w -> b c (h r1) (w r2)", r1=2, r2=2)
        return h + shortcut


class Encoder(nn.Module):
    """
    Encoder network that compresses input to latent representation.

    Parameters
    ----------
    in_channels : int
        Number of input channels.
    z_channels : int
        Number of latent channels.
    block_out_channels : Tuple[int, ...]
        Output channels for each block.
    num_res_blocks : int
        Number of residual blocks per block.
    ffactor_spatial : int
        Spatial downsampling factor.
    downsample_match_channel : bool
        Whether to match channels during downsampling.
    """

    def __init__(
        self,
        in_channels: int,
        z_channels: int,
        block_out_channels: Tuple[int, ...],
        num_res_blocks: int,
        ffactor_spatial: int,
        downsample_match_channel: bool = True,
    ):
        super().__init__()
        assert block_out_channels[-1] % (2 * z_channels) == 0

        self.z_channels = z_channels
        self.block_out_channels = block_out_channels
        self.num_res_blocks = num_res_blocks

        self.conv_in = Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)

        self.down = nn.ModuleList()
        block_in = block_out_channels[0]

        for i_level, ch in enumerate(block_out_channels):
            block = nn.ModuleList()
            block_out = ch

            for _ in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out

            down = nn.Module()
            down.block = block

            add_spatial_downsample = bool(i_level < np.log2(ffactor_spatial))

            if add_spatial_downsample:
                assert i_level < len(block_out_channels) - 1
                block_out = block_out_channels[i_level + 1] if downsample_match_channel else block_in
                down.downsample = Downsample(block_in, block_out)
                block_in = block_out

            self.down.append(down)

        # Middle blocks with attention
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # Output layers
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)

        self.gradient_checkpointing = False

    def forward(self, x: Tensor) -> Tensor:
        use_checkpointing = bool(self.training and self.gradient_checkpointing)

        # Downsampling
        h = self.conv_in(x)
        for i_level in range(len(self.block_out_channels)):
            for i_block in range(self.num_res_blocks):
                h = forward_with_checkpointing(
                    self.down[i_level].block[i_block], h, use_checkpointing=use_checkpointing
                )
            if hasattr(self.down[i_level], "downsample"):
                h = forward_with_checkpointing(self.down[i_level].downsample, h, use_checkpointing=use_checkpointing)

        # Middle processing
        h = forward_with_checkpointing(self.mid.block_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.attn_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.block_2, h, use_checkpointing=use_checkpointing)

        # Output with shortcut connection
        group_size = self.block_out_channels[-1] // (2 * self.z_channels)
        shortcut = rearrange(h, "b (c r) h w -> b c r h w", r=group_size).mean(dim=2)
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        h += shortcut
        return h


class Decoder(nn.Module):
    """
    Decoder network that reconstructs output from latent representation.

    Parameters
    ----------
    z_channels : int
        Number of latent channels.
    out_channels : int
        Number of output channels.
    block_out_channels : Tuple[int, ...]
        Output channels for each block.
    num_res_blocks : int
        Number of residual blocks per block.
    ffactor_spatial : int
        Spatial upsampling factor.
    upsample_match_channel : bool
        Whether to match channels during upsampling.
    """

    def __init__(
        self,
        z_channels: int,
        out_channels: int,
        block_out_channels: Tuple[int, ...],
        num_res_blocks: int,
        ffactor_spatial: int,
        upsample_match_channel: bool = True,
    ):
        super().__init__()
        assert block_out_channels[0] % z_channels == 0

        self.z_channels = z_channels
        self.block_out_channels = block_out_channels
        self.num_res_blocks = num_res_blocks

        block_in = block_out_channels[0]
        self.conv_in = Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)

        # Middle blocks with attention
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # Upsampling blocks
        self.up = nn.ModuleList()
        for i_level, ch in enumerate(block_out_channels):
            block = nn.ModuleList()
            block_out = ch

            for _ in range(self.num_res_blocks + 1):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out

            up = nn.Module()
            up.block = block

            # Determine upsampling strategy
            add_spatial_upsample = bool(i_level < np.log2(ffactor_spatial))

            if add_spatial_upsample:
                assert i_level < len(block_out_channels) - 1
                block_out = block_out_channels[i_level + 1] if upsample_match_channel else block_in
                up.upsample = Upsample(block_in, block_out)
                block_in = block_out

            self.up.append(up)

        # Output layers
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = Conv2d(block_in, out_channels, kernel_size=3, stride=1, padding=1)

        self.gradient_checkpointing = False

    def forward(self, z: Tensor) -> Tensor:
        use_checkpointing = bool(self.training and self.gradient_checkpointing)

        repeats = self.block_out_channels[0] // self.z_channels
        h = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)

        h = forward_with_checkpointing(self.mid.block_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.attn_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.block_2, h, use_checkpointing=use_checkpointing)

        for i_level in range(len(self.block_out_channels)):
            for i_block in range(self.num_res_blocks + 1):
                h = forward_with_checkpointing(self.up[i_level].block[i_block], h, use_checkpointing=use_checkpointing)
            if hasattr(self.up[i_level], "upsample"):
                h = forward_with_checkpointing(self.up[i_level].upsample, h, use_checkpointing=use_checkpointing)

        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        return h


class HunyuanVAE2D(ModelMixin, ConfigMixin):
    """
    HunyuanVAE2D: A 2D image VAE model with spatial tiling support.

    This model implements a variational autoencoder specifically designed for image data,
    with support for memory-efficient processing through tiling strategies.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        latent_channels: int,
        block_out_channels: Tuple[int, ...],
        layers_per_block: int,
        ffactor_spatial: int,
        sample_size: int,
        sample_tsize: int,
        scaling_factor: float = None,
        shift_factor: Optional[float] = None,
        downsample_match_channel: bool = True,
        upsample_match_channel: bool = True,
        **kwargs,
    ):
        super().__init__()
        self.ffactor_spatial = ffactor_spatial
        self.scaling_factor = scaling_factor
        self.shift_factor = shift_factor

        self.encoder = Encoder(
            in_channels=in_channels,
            z_channels=latent_channels,
            block_out_channels=block_out_channels,
            num_res_blocks=layers_per_block,
            ffactor_spatial=ffactor_spatial,
            downsample_match_channel=downsample_match_channel,
        )

        self.decoder = Decoder(
            z_channels=latent_channels,
            out_channels=out_channels,
            block_out_channels=list(reversed(block_out_channels)),
            num_res_blocks=layers_per_block,
            ffactor_spatial=ffactor_spatial,
            upsample_match_channel=upsample_match_channel,
        )

        # Tiling and slicing configuration
        self.use_slicing = False
        self.use_spatial_tiling = False
        self.use_tiling_during_training = False

        # Tiling parameters
        self.tile_sample_min_size = sample_size
        self.tile_latent_min_size = sample_size // ffactor_spatial
        self.tile_overlap_factor = 0.25

    def _set_gradient_checkpointing(self, module, value=False):
        """
        Enable or disable gradient checkpointing for memory efficiency.

        Parameters
        ----------
        module : nn.Module
            The module to set.
        value : bool
            Whether to enable gradient checkpointing.
        """
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

    def enable_spatial_tiling(self, use_tiling: bool = True):
        """Enable or disable spatial tiling."""
        self.use_spatial_tiling = use_tiling

    def disable_spatial_tiling(self):
        """Disable spatial tiling."""
        self.use_spatial_tiling = False

    def enable_tiling(self, use_tiling: bool = True):
        """Enable or disable spatial tiling (alias for enable_spatial_tiling)."""
        self.enable_spatial_tiling(use_tiling)

    def disable_tiling(self):
        """Disable spatial tiling (alias for disable_spatial_tiling)."""
        self.disable_spatial_tiling()

    def enable_slicing(self):
        """Enable slicing for batch processing."""
        self.use_slicing = True

    def disable_slicing(self):
        """Disable slicing for batch processing."""
        self.use_slicing = False

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        """
        Blend two tensors horizontally with smooth transition.

        Parameters
        ----------
        a : torch.Tensor
            Left tensor.
        b : torch.Tensor
            Right tensor.
        blend_extent : int
            Number of columns to blend.
        """
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        """
        Blend two tensors vertically with smooth transition.

        Parameters
        ----------
        a : torch.Tensor
            Top tensor.
        b : torch.Tensor
            Bottom tensor.
        blend_extent : int
            Number of rows to blend.
        """
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def spatial_tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
        """
        Encode input using spatial tiling strategy.

        Parameters
        ----------
        x : torch.Tensor
            Input tensor of shape (B, C, T, H, W).
        """
        B, C, T, H, W = x.shape
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
        row_limit = self.tile_latent_min_size - blend_extent

        rows = []
        for i in range(0, H, overlap_size):
            row = []
            for j in range(0, W, overlap_size):
                tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
                tile = self.encoder(tile)
                row.append(tile)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))

        moments = torch.cat(result_rows, dim=-2)
        return moments

    def spatial_tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
        """
        Decode latent using spatial tiling strategy.

        Parameters
        ----------
        z : torch.Tensor
            Latent tensor of shape (B, C, H, W).
        """
        B, C, H, W = z.shape
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
        row_limit = self.tile_sample_min_size - blend_extent

        rows = []
        for i in range(0, H, overlap_size):
            row = []
            for j in range(0, W, overlap_size):
                tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=-2)
        return dec

    def encode(self, x: Tensor, return_dict: bool = True):
        """
        Encode input tensor to latent representation.

        Parameters
        ----------
        x : Tensor
            Input tensor.
        return_dict : bool
            Whether to return a dict.
        """
        original_ndim = x.ndim
        if original_ndim == 5:
            x = x.squeeze(2)

        def _encode(x):
            if self.use_spatial_tiling and (
                x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size
            ):
                return self.spatial_tiled_encode(x)
            return self.encoder(x)

        # Process with or without slicing
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [_encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = _encode(x)

        if original_ndim == 5:
            h = h.unsqueeze(2)

        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def decode(self, z: Tensor, return_dict: bool = True, generator=None):
        """
        Decode latent representation to output tensor.

        Parameters
        ----------
        z : Tensor
            Latent tensor.
        return_dict : bool
            Whether to return a dict.
        generator : unused
            For compatibility.
        """
        original_ndim = z.ndim
        if original_ndim == 5:
            z = z.squeeze(2)

        def _decode(z):
            if self.use_spatial_tiling and (
                z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size
            ):
                return self.spatial_tiled_decode(z)
            return self.decoder(z)

        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [_decode(z_slice) for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = _decode(z)

        if original_ndim == 5:
            decoded = decoded.unsqueeze(2)

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_posterior: bool = True,
        return_dict: bool = True,
    ):
        """
        Forward pass through the VAE (Encode and Decode).

        Parameters
        ----------
        sample : torch.Tensor
            Input tensor.
        sample_posterior : bool
            Whether to sample from the posterior.
        return_posterior : bool
            Whether to return the posterior.
        return_dict : bool
            Whether to return a dict.
        """
        posterior = self.encode(sample).latent_dist
        z = posterior.sample() if sample_posterior else posterior.mode()
        dec = self.decode(z).sample

        if return_dict:
            return DecoderOutput(sample=dec, posterior=posterior)
        else:
            return (dec, posterior)

    def load_state_dict(self, state_dict, strict=True):
        """
        Load state dict, handling possible 5D weight tensors.

        Parameters
        ----------
        state_dict : dict
            State dictionary.
        strict : bool
            Whether to strictly enforce that the keys in state_dict match the keys returned by this module's state_dict function.
        """
        converted_state_dict = {}

        for key, value in state_dict.items():
            if 'weight' in key:
                if len(value.shape) == 5 and value.shape[2] == 1:
                    converted_state_dict[key] = value.squeeze(2)
                else:
                    converted_state_dict[key] = value
            else:
                converted_state_dict[key] = value

        return super().load_state_dict(converted_state_dict, strict=strict)