File size: 36,697 Bytes
43c5292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
"""
Reference code
[FLUX] https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/autoencoder.py
[DCAE] https://github.com/mit-han-lab/efficientvit/blob/master/efficientvit/models/efficientvit/dc_ae.py
"""

import math
import random
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from einops import rearrange
from torch import Tensor, nn

from .hunyuanimage_vae import BaseOutput, DiagonalGaussianDistribution


@dataclass
class DecoderOutput(BaseOutput):
    sample: torch.FloatTensor
    posterior: Optional[DiagonalGaussianDistribution] = None


def swish(x: Tensor) -> Tensor:
    return x * torch.sigmoid(x)


def forward_with_checkpointing(module, *inputs, use_checkpointing=False):
    def create_custom_forward(module):
        def custom_forward(*inputs):
            return module(*inputs)

        return custom_forward

    if use_checkpointing:
        return torch.utils.checkpoint.checkpoint(create_custom_forward(module), *inputs, use_reentrant=False)
    else:
        return module(*inputs)


# Optimized implementation of CogVideoXSafeConv3d
# https://github.com/huggingface/diffusers/blob/c9ff360966327ace3faad3807dc871a4e5447501/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py#L38
class PatchCausalConv3d(nn.Conv3d):
    def find_split_indices(self, seq_len, part_num):
        ideal_interval = seq_len / part_num
        possible_indices = list(range(0, seq_len, self.stride[0]))
        selected_indices = []

        for i in range(1, part_num):
            closest = min(possible_indices, key=lambda x: abs(x - round(i * ideal_interval)))
            if closest not in selected_indices:
                selected_indices.append(closest)

        merged_indices = []
        prev_idx = 0
        for idx in selected_indices:
            if idx - prev_idx >= self.kernel_size[0]:
                merged_indices.append(idx)
                prev_idx = idx

        return merged_indices

    def forward(self, input):
        T = input.shape[2]  # input: NCTHW
        memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
        if T > self.kernel_size[0] and memory_count > 2:
            kernel_size = self.kernel_size[0]
            part_num = int(memory_count / 2) + 1
            split_indices = self.find_split_indices(T, part_num)
            input_chunks = torch.tensor_split(input, split_indices, dim=2) if len(split_indices) > 0 else [input]
            if kernel_size > 1:
                input_chunks = [input_chunks[0]] + [
                    torch.cat(
                        (
                            input_chunks[i - 1][:, :, -kernel_size + 1 :],
                            input_chunks[i],
                        ),
                        dim=2,
                    )
                    for i in range(1, len(input_chunks))
                ]

            output_chunks = []
            for input_chunk in input_chunks:
                output_chunks.append(super().forward(input_chunk))
            output = torch.cat(output_chunks, dim=2)
            return output
        else:
            return super().forward(input)


class CausalConv3d(nn.Module):
    def __init__(
        self,
        chan_in,
        chan_out,
        kernel_size: Union[int, Tuple[int, int, int]],
        stride: Union[int, Tuple[int, int, int]] = 1,
        dilation: Union[int, Tuple[int, int, int]] = 1,
        pad_mode="replicate",
        disable_causal=False,
        enable_patch_conv=False,
        **kwargs,
    ):
        super().__init__()

        self.pad_mode = pad_mode
        if disable_causal:
            padding = (
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
            )
        else:
            padding = (
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
                kernel_size // 2,
                kernel_size - 1,
                0,
            )  # W, H, T
        self.time_causal_padding = padding

        if enable_patch_conv:
            self.conv = PatchCausalConv3d(
                chan_in,
                chan_out,
                kernel_size,
                stride=stride,
                dilation=dilation,
                **kwargs,
            )
        else:
            self.conv = nn.Conv3d(
                chan_in,
                chan_out,
                kernel_size,
                stride=stride,
                dilation=dilation,
                **kwargs,
            )

    def forward(self, x):
        x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
        return self.conv(x)


class RMS_norm(nn.Module):
    def __init__(self, dim, channel_first=True, images=True, bias=False):
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias


class Conv3d(nn.Conv3d):
    """Perform Conv3d on patches with numerical differences from nn.Conv3d within 1e-5. Only symmetric padding is supported."""

    def forward(self, input):
        B, C, T, H, W = input.shape
        memory_count = (C * T * H * W) * 2 / 1024**3
        if memory_count > 2:
            n_split = math.ceil(memory_count / 2)
            assert n_split >= 2
            chunks = torch.chunk(input, chunks=n_split, dim=-3)
            padded_chunks = []
            for i in range(len(chunks)):
                if self.padding[0] > 0:
                    padded_chunk = F.pad(
                        chunks[i],
                        (0, 0, 0, 0, self.padding[0], self.padding[0]),
                        mode="constant" if self.padding_mode == "zeros" else self.padding_mode,
                        value=0,
                    )
                    if i > 0:
                        padded_chunk[:, :, : self.padding[0]] = chunks[i - 1][:, :, -self.padding[0] :]
                    if i < len(chunks) - 1:
                        padded_chunk[:, :, -self.padding[0] :] = chunks[i + 1][:, :, : self.padding[0]]
                else:
                    padded_chunk = chunks[i]
                padded_chunks.append(padded_chunk)
            padding_bak = self.padding
            self.padding = (0, self.padding[1], self.padding[2])
            outputs = []
            for i in range(len(padded_chunks)):
                outputs.append(super().forward(padded_chunks[i]))
            self.padding = padding_bak
            return torch.cat(outputs, dim=-3)
        else:
            return super().forward(input)


def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None):
    seq_len = n_frame * n_hw
    mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
    for i in range(seq_len):
        i_frame = i // n_hw
        mask[i, : (i_frame + 1) * n_hw] = 0
    if batch_size is not None:
        mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
    return mask


class AttnBlock(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()
        self.in_channels = in_channels

        # self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.norm = RMS_norm(in_channels, images=False)

        self.q = Conv3d(in_channels, in_channels, kernel_size=1)
        self.k = Conv3d(in_channels, in_channels, kernel_size=1)
        self.v = Conv3d(in_channels, in_channels, kernel_size=1)
        self.proj_out = Conv3d(in_channels, in_channels, kernel_size=1)

    def attention(self, h_: Tensor) -> Tensor:
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        b, c, f, h, w = q.shape
        q = rearrange(q, "b c f h w -> b 1 (f h w) c").contiguous()
        k = rearrange(k, "b c f h w -> b 1 (f h w) c").contiguous()
        v = rearrange(v, "b c f h w -> b 1 (f h w) c").contiguous()
        attention_mask = prepare_causal_attention_mask(f, h * w, h_.dtype, h_.device, batch_size=b)
        h_ = nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attention_mask.unsqueeze(1))

        return rearrange(h_, "b 1 (f h w) c -> b c f h w", f=f, h=h, w=w, c=c, b=b)

    def forward(self, x: Tensor) -> Tensor:
        return x + self.proj_out(self.attention(x))


class ResnetBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        # self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        # self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm1 = RMS_norm(in_channels, images=False)
        self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3)

        # self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
        # self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm2 = RMS_norm(out_channels, images=False)
        self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3)
        if self.in_channels != self.out_channels:
            self.nin_shortcut = Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = swish(h)
        h = self.conv1(h)

        h = self.norm2(h)
        h = swish(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            x = self.nin_shortcut(x)
        return x + h


class Downsample(nn.Module):
    def __init__(self, in_channels: int, add_temporal_downsample: bool = True):
        super().__init__()
        self.add_temporal_downsample = add_temporal_downsample
        stride = (2, 2, 2) if add_temporal_downsample else (1, 2, 2)  # THW
        # no asymmetric padding in torch conv, must do it ourselves
        # self.conv = Conv3d(in_channels, in_channels, kernel_size=3, stride=stride, padding=0)
        self.conv = CausalConv3d(in_channels, in_channels, kernel_size=3)

    def forward(self, x: Tensor):
        spatial_pad = (0, 1, 0, 1, 0, 0)  # WHT
        x = nn.functional.pad(x, spatial_pad, mode="constant", value=0)

        temporal_pad = (0, 0, 0, 0, 0, 1) if self.add_temporal_downsample else (0, 0, 0, 0, 1, 1)
        x = nn.functional.pad(x, temporal_pad, mode="replicate")

        x = self.conv(x)
        return x


class DownsampleDCAE(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, add_temporal_downsample: bool = True):
        super().__init__()
        factor = 2 * 2 * 2 if add_temporal_downsample else 1 * 2 * 2
        assert out_channels % factor == 0
        # self.conv = Conv3d(in_channels, out_channels // factor, kernel_size=3, stride=1, padding=1)
        self.conv = CausalConv3d(in_channels, out_channels // factor, kernel_size=3)

        self.add_temporal_downsample = add_temporal_downsample
        self.group_size = factor * in_channels // out_channels

    def forward(self, x: Tensor):
        r1 = 2 if self.add_temporal_downsample else 1
        h = self.conv(x)
        if self.add_temporal_downsample:
            h_first = h[:, :, :1, :, :]
            h_first = rearrange(h_first, "b c f (h r2) (w r3) -> b (r2 r3 c) f h w", r2=2, r3=2)
            h_first = torch.cat([h_first, h_first], dim=1)
            h_next = h[:, :, 1:, :, :]
            h_next = rearrange(
                h_next,
                "b c (f r1) (h r2) (w r3) -> b (r1 r2 r3 c) f h w",
                r1=r1,
                r2=2,
                r3=2,
            )
            h = torch.cat([h_first, h_next], dim=2)
            # shortcut computation
            x_first = x[:, :, :1, :, :]
            x_first = rearrange(x_first, "b c f (h r2) (w r3) -> b (r2 r3 c) f h w", r2=2, r3=2)
            B, C, T, H, W = x_first.shape
            x_first = x_first.view(B, h.shape[1], self.group_size // 2, T, H, W).mean(dim=2)

            x_next = x[:, :, 1:, :, :]
            x_next = rearrange(
                x_next,
                "b c (f r1) (h r2) (w r3) -> b (r1 r2 r3 c) f h w",
                r1=r1,
                r2=2,
                r3=2,
            )
            B, C, T, H, W = x_next.shape
            x_next = x_next.view(B, h.shape[1], self.group_size, T, H, W).mean(dim=2)
            shortcut = torch.cat([x_first, x_next], dim=2)
        else:
            h = rearrange(h, "b c (f r1) (h r2) (w r3) -> b (r1 r2 r3 c) f h w", r1=r1, r2=2, r3=2)
            shortcut = rearrange(x, "b c (f r1) (h r2) (w r3) -> b (r1 r2 r3 c) f h w", r1=r1, r2=2, r3=2)
            B, C, T, H, W = shortcut.shape
            shortcut = shortcut.view(B, h.shape[1], self.group_size, T, H, W).mean(dim=2)

        return h + shortcut


class Upsample(nn.Module):
    def __init__(self, in_channels: int, add_temporal_upsample: bool = True):
        super().__init__()
        self.add_temporal_upsample = add_temporal_upsample
        self.scale_factor = (2, 2, 2) if add_temporal_upsample else (1, 2, 2)  # THW
        # self.conv = Conv3d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
        self.conv = CausalConv3d(in_channels, in_channels, kernel_size=3)

    def forward(self, x: Tensor):
        x = nn.functional.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
        x = self.conv(x)
        return x


class UpsampleDCAE(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, add_temporal_upsample: bool = True):
        super().__init__()
        factor = 2 * 2 * 2 if add_temporal_upsample else 1 * 2 * 2
        # self.conv = Conv3d(in_channels, out_channels * factor, kernel_size=3, stride=1, padding=1)
        self.conv = CausalConv3d(in_channels, out_channels * factor, kernel_size=3)

        self.add_temporal_upsample = add_temporal_upsample
        self.repeats = factor * out_channels // in_channels

    def forward(self, x: Tensor):
        r1 = 2 if self.add_temporal_upsample else 1
        h = self.conv(x)
        if self.add_temporal_upsample:
            h_first = h[:, :, :1, :, :]
            h_first = rearrange(h_first, "b (r2 r3 c) f h w -> b c f (h r2) (w r3)", r2=2, r3=2)
            h_first = h_first[:, : h_first.shape[1] // 2]

            h_next = h[:, :, 1:, :, :]
            h_next = rearrange(
                h_next,
                "b (r1 r2 r3 c) f h w -> b c (f r1) (h r2) (w r3)",
                r1=r1,
                r2=2,
                r3=2,
            )
            h = torch.cat([h_first, h_next], dim=2)

            # shortcut computation
            x_first = x[:, :, :1, :, :]
            x_first = rearrange(x_first, "b (r2 r3 c) f h w -> b c f (h r2) (w r3)", r2=2, r3=2)
            x_first = x_first.repeat_interleave(repeats=self.repeats // 2, dim=1)

            x_next = x[:, :, 1:, :, :]
            x_next = rearrange(
                x_next,
                "b (r1 r2 r3 c) f h w -> b c (f r1) (h r2) (w r3)",
                r1=r1,
                r2=2,
                r3=2,
            )
            x_next = x_next.repeat_interleave(repeats=self.repeats, dim=1)
            shortcut = torch.cat([x_first, x_next], dim=2)

        else:
            h = rearrange(h, "b (r1 r2 r3 c) f h w -> b c (f r1) (h r2) (w r3)", r1=r1, r2=2, r3=2)
            shortcut = x.repeat_interleave(repeats=self.repeats, dim=1)
            shortcut = rearrange(
                shortcut,
                "b (r1 r2 r3 c) f h w -> b c (f r1) (h r2) (w r3)",
                r1=r1,
                r2=2,
                r3=2,
            )
        return h + shortcut


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        z_channels: int,
        block_out_channels: Tuple[int, ...],
        num_res_blocks: int,
        ffactor_spatial: int,
        ffactor_temporal: int,
        downsample_match_channel: bool = True,
    ):
        super().__init__()
        assert block_out_channels[-1] % (2 * z_channels) == 0

        self.z_channels = z_channels
        self.block_out_channels = block_out_channels
        self.num_res_blocks = num_res_blocks

        # downsampling
        # self.conv_in = Conv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1)
        self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3)

        self.down = nn.ModuleList()
        block_in = block_out_channels[0]
        for i_level, ch in enumerate(block_out_channels):
            block = nn.ModuleList()
            block_out = ch
            for _ in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out
            down = nn.Module()
            down.block = block

            add_spatial_downsample = bool(i_level < np.log2(ffactor_spatial))
            add_temporal_downsample = add_spatial_downsample and bool(
                i_level >= np.log2(ffactor_spatial // ffactor_temporal)
            )
            if add_spatial_downsample or add_temporal_downsample:
                assert i_level < len(block_out_channels) - 1
                block_out = block_out_channels[i_level + 1] if downsample_match_channel else block_in
                down.downsample = DownsampleDCAE(block_in, block_out, add_temporal_downsample)
                block_in = block_out
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # end
        # self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        # self.conv_out = Conv3d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
        self.norm_out = RMS_norm(block_in, images=False)
        self.conv_out = CausalConv3d(block_in, 2 * z_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(self, x: Tensor) -> Tensor:
        use_checkpointing = bool(self.training and self.gradient_checkpointing)

        # downsampling
        h = self.conv_in(x)
        for i_level in range(len(self.block_out_channels)):
            for i_block in range(self.num_res_blocks):
                h = forward_with_checkpointing(
                    self.down[i_level].block[i_block],
                    h,
                    use_checkpointing=use_checkpointing,
                )
            if hasattr(self.down[i_level], "downsample"):
                h = forward_with_checkpointing(
                    self.down[i_level].downsample,
                    h,
                    use_checkpointing=use_checkpointing,
                )

        # middle
        h = forward_with_checkpointing(self.mid.block_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.attn_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.block_2, h, use_checkpointing=use_checkpointing)

        # end
        group_size = self.block_out_channels[-1] // (2 * self.z_channels)
        shortcut = rearrange(h, "b (c r) f h w -> b c r f h w", r=group_size).mean(dim=2)
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        h += shortcut
        return h


class Decoder(nn.Module):
    def __init__(
        self,
        z_channels: int,
        out_channels: int,
        block_out_channels: Tuple[int, ...],
        num_res_blocks: int,
        ffactor_spatial: int,
        ffactor_temporal: int,
        upsample_match_channel: bool = True,
    ):
        super().__init__()
        assert block_out_channels[0] % z_channels == 0

        self.z_channels = z_channels
        self.block_out_channels = block_out_channels
        self.num_res_blocks = num_res_blocks

        # z to block_in
        block_in = block_out_channels[0]
        # self.conv_in = Conv3d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
        self.conv_in = CausalConv3d(z_channels, block_in, kernel_size=3)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # upsampling
        self.up = nn.ModuleList()
        for i_level, ch in enumerate(block_out_channels):
            block = nn.ModuleList()
            block_out = ch
            for _ in range(self.num_res_blocks + 1):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out
            up = nn.Module()
            up.block = block

            add_spatial_upsample = bool(i_level < np.log2(ffactor_spatial))
            add_temporal_upsample = bool(i_level < np.log2(ffactor_temporal))
            if add_spatial_upsample or add_temporal_upsample:
                assert i_level < len(block_out_channels) - 1
                block_out = block_out_channels[i_level + 1] if upsample_match_channel else block_in
                up.upsample = UpsampleDCAE(block_in, block_out, add_temporal_upsample)
                block_in = block_out
            self.up.append(up)

        # end
        # self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        # self.conv_out = Conv3d(block_in, out_channels, kernel_size=3, stride=1, padding=1)

        self.norm_out = RMS_norm(block_in, images=False)
        self.conv_out = CausalConv3d(block_in, out_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(self, z: Tensor) -> Tensor:
        use_checkpointing = bool(self.training and self.gradient_checkpointing)

        # z to block_in
        repeats = self.block_out_channels[0] // (self.z_channels)
        h = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)

        # middle
        h = forward_with_checkpointing(self.mid.block_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.attn_1, h, use_checkpointing=use_checkpointing)
        h = forward_with_checkpointing(self.mid.block_2, h, use_checkpointing=use_checkpointing)

        # upsampling
        for i_level in range(len(self.block_out_channels)):
            for i_block in range(self.num_res_blocks + 1):
                h = forward_with_checkpointing(
                    self.up[i_level].block[i_block],
                    h,
                    use_checkpointing=use_checkpointing,
                )
            if hasattr(self.up[i_level], "upsample"):
                h = forward_with_checkpointing(self.up[i_level].upsample, h, use_checkpointing=use_checkpointing)

        # end
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        return h


class AutoencoderKLConv3D(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        latent_channels: int,
        block_out_channels: Tuple[int, ...],
        layers_per_block: int,
        ffactor_spatial: int,
        ffactor_temporal: int,
        sample_size: int,
        sample_tsize: int,
        scaling_factor: float = None,
        shift_factor: Optional[float] = None,
        downsample_match_channel: bool = True,
        upsample_match_channel: bool = True,
    ):
        super().__init__()
        self.ffactor_spatial = ffactor_spatial
        self.ffactor_temporal = ffactor_temporal
        self.scaling_factor = scaling_factor
        self.shift_factor = shift_factor

        self.encoder = Encoder(
            in_channels=in_channels,
            z_channels=latent_channels,
            block_out_channels=block_out_channels,
            num_res_blocks=layers_per_block,
            ffactor_spatial=ffactor_spatial,
            ffactor_temporal=ffactor_temporal,
            downsample_match_channel=downsample_match_channel,
        )
        self.decoder = Decoder(
            z_channels=latent_channels,
            out_channels=out_channels,
            block_out_channels=list(reversed(block_out_channels)),
            num_res_blocks=layers_per_block,
            ffactor_spatial=ffactor_spatial,
            ffactor_temporal=ffactor_temporal,
            upsample_match_channel=upsample_match_channel,
        )

        self.use_slicing = False
        self.use_spatial_tiling = False
        self.use_temporal_tiling = False
        self.use_tiling_during_training = False

        # only relevant if vae tiling is enabled
        self.tile_sample_min_size = sample_size
        self.tile_latent_min_size = sample_size // ffactor_spatial
        self.tile_sample_min_tsize = sample_tsize
        self.tile_latent_min_tsize = sample_tsize // ffactor_temporal
        self.tile_overlap_factor = 0.25

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (Encoder, Decoder)):
            module.gradient_checkpointing = value

    def enable_tiling_during_training(self, use_tiling: bool = True):
        self.use_tiling_during_training = use_tiling

    def disable_tiling_during_training(self):
        self.enable_tiling_during_training(False)

    def enable_temporal_tiling(self, use_tiling: bool = True):
        self.use_temporal_tiling = use_tiling

    def disable_temporal_tiling(self):
        self.enable_temporal_tiling(False)

    def enable_spatial_tiling(self, use_tiling: bool = True):
        self.use_spatial_tiling = use_tiling

    def disable_spatial_tiling(self):
        self.enable_spatial_tiling(False)

    def enable_tiling(self, use_tiling: bool = True):
        self.enable_spatial_tiling(use_tiling)

    def disable_tiling(self):
        self.disable_spatial_tiling()

    def enable_slicing(self):
        self.use_slicing = True

    def disable_slicing(self):
        self.use_slicing = False

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int):
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int):
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int):
        blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
        for x in range(blend_extent):
            b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
                x / blend_extent
            )
        return b

    def spatial_tiled_encode(self, x: torch.Tensor):
        B, C, T, H, W = x.shape
        overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))  # 256 * (1 - 0.25) = 192
        blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)  # 8 * 0.25 = 2
        row_limit = self.tile_latent_min_size - blend_extent  # 8 - 2 = 6

        rows = []
        for i in range(0, H, overlap_size):
            row = []
            for j in range(0, W, overlap_size):
                tile = x[
                    :,
                    :,
                    :,
                    i : i + self.tile_sample_min_size,
                    j : j + self.tile_sample_min_size,
                ]
                tile = self.encoder(tile)
                row.append(tile)
            rows.append(row)
        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))
        moments = torch.cat(result_rows, dim=-2)
        return moments

    def temporal_tiled_encode(self, x: torch.Tensor):
        B, C, T, H, W = x.shape
        overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))  # 64 * (1 - 0.25) = 48
        blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)  # 8 * 0.25 = 2
        t_limit = self.tile_latent_min_tsize - blend_extent  # 8 - 2 = 6

        row = []
        for i in range(0, T, overlap_size):
            tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :]
            if self.use_spatial_tiling and (
                tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size
            ):
                tile = self.spatial_tiled_encode(tile)
            else:
                tile = self.encoder(tile)
            if i > 0:
                tile = tile[:, :, 1:, :, :]
            row.append(tile)
        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_extent)
                result_row.append(tile[:, :, :t_limit, :, :])
            else:
                result_row.append(tile[:, :, : t_limit + 1, :, :])
        moments = torch.cat(result_row, dim=-3)
        return moments

    def spatial_tiled_decode(self, z: torch.Tensor):
        B, C, T, H, W = z.shape
        overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))  # 8 * (1 - 0.25) = 6
        blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)  # 256 * 0.25 = 64
        row_limit = self.tile_sample_min_size - blend_extent  # 256 - 64 = 192

        rows = []
        for i in range(0, H, overlap_size):
            row = []
            for j in range(0, W, overlap_size):
                tile = z[
                    :,
                    :,
                    :,
                    i : i + self.tile_latent_min_size,
                    j : j + self.tile_latent_min_size,
                ]
                decoded = self.decoder(tile)
                row.append(decoded)
            rows.append(row)

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_extent)
                result_row.append(tile[:, :, :, :row_limit, :row_limit])
            result_rows.append(torch.cat(result_row, dim=-1))
        dec = torch.cat(result_rows, dim=-2)
        return dec

    def temporal_tiled_decode(self, z: torch.Tensor):
        B, C, T, H, W = z.shape
        overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))  # 8 * (1 - 0.25) = 6
        blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)  # 64 * 0.25 = 16
        t_limit = self.tile_sample_min_tsize - blend_extent  # 64 - 16 = 48
        assert 0 < overlap_size < self.tile_latent_min_tsize

        row = []
        for i in range(0, T, overlap_size):
            tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :]
            if self.use_spatial_tiling and (
                tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size
            ):
                decoded = self.spatial_tiled_decode(tile)
            else:
                decoded = self.decoder(tile)
            if i > 0:
                decoded = decoded[:, :, 1:, :, :]
            row.append(decoded)

        result_row = []
        for i, tile in enumerate(row):
            if i > 0:
                tile = self.blend_t(row[i - 1], tile, blend_extent)
                result_row.append(tile[:, :, :t_limit, :, :])
            else:
                result_row.append(tile[:, :, : t_limit + 1, :, :])
        dec = torch.cat(result_row, dim=-3)
        return dec

    def encode(self, x: Tensor, return_dict: bool = True):
        def _encode(x):
            if self.use_temporal_tiling and x.shape[-3] > self.tile_sample_min_tsize:
                return self.temporal_tiled_encode(x)
            if self.use_spatial_tiling and (
                x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size
            ):
                return self.spatial_tiled_encode(x)
            return self.encoder(x)

        assert len(x.shape) == 5  # (B, C, T, H, W)

        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [_encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = _encode(x)
        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)

        return AutoencoderKLOutput(latent_dist=posterior)

    def decode(self, z: Tensor, return_dict: bool = True, generator=None):
        def _decode(z):
            if self.use_temporal_tiling and z.shape[-3] > self.tile_latent_min_tsize:
                return self.temporal_tiled_decode(z)
            if self.use_spatial_tiling and (
                z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size
            ):
                return self.spatial_tiled_decode(z)
            return self.decoder(z)

        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [_decode(z_slice) for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = _decode(z)

        # if z.shape[-3] == 1:
        #     decoded = decoded[:, :, -1:]

        if not return_dict:
            return (decoded,)

        return DecoderOutput(sample=decoded)

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_posterior: bool = True,
        return_dict: bool = True,
    ):
        posterior = self.encode(sample).latent_dist
        z = posterior.sample() if sample_posterior else posterior.mode()
        dec = self.decode(z).sample
        return DecoderOutput(sample=dec, posterior=posterior) if return_dict else (dec, posterior)

    def random_reset_tiling(self, x: torch.Tensor):
        if x.shape[-3] == 1:
            self.disable_spatial_tiling()
            self.disable_temporal_tiling()
            return

        min_sample_size = int(1 / self.tile_overlap_factor) * self.ffactor_spatial
        min_sample_tsize = int(1 / self.tile_overlap_factor) * self.ffactor_temporal
        sample_size = random.choice([None, 1 * min_sample_size, 2 * min_sample_size, 3 * min_sample_size])
        if sample_size is None:
            self.disable_spatial_tiling()
        else:
            self.tile_sample_min_size = sample_size
            self.tile_latent_min_size = sample_size // self.ffactor_spatial
            self.enable_spatial_tiling()

        sample_tsize = random.choice([None, 1 * min_sample_tsize, 2 * min_sample_tsize, 3 * min_sample_tsize])
        if sample_tsize is None:
            self.disable_temporal_tiling()
        else:
            self.tile_sample_min_tsize = sample_tsize
            self.tile_latent_min_tsize = sample_tsize // self.ffactor_temporal
            self.enable_temporal_tiling()