Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import os | |
| import random | |
| from functools import cache | |
| from operator import itemgetter | |
| import langsmith | |
| from langchain.memory import ConversationBufferWindowMemory | |
| from langchain.retrievers import EnsembleRetriever | |
| from langchain_community.document_transformers import LongContextReorder | |
| from langchain_core.documents import Document | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_core.runnables import RunnableLambda | |
| from langchain_openai.chat_models import ChatOpenAI | |
| from .prompt_template import generate_prompt_template | |
| from .retrievers_setup import ( | |
| DenseRetrieverClient, | |
| SparseRetrieverClient, | |
| compression_retriever_setup, | |
| multi_query_retriever_setup, | |
| ) | |
| # Helpers | |
| def reorder_documents(docs: list[Document]) -> list[Document]: | |
| """Reorder documents to mitigate performance degradation with long contexts.""" | |
| return LongContextReorder().transform_documents(docs) | |
| def randomize_documents(documents: list[Document]) -> list[Document]: | |
| """Randomize documents to vary model recommendations.""" | |
| random.shuffle(documents) | |
| return documents | |
| class DocumentFormatter: | |
| def __init__(self, prefix: str): | |
| self.prefix = prefix | |
| def __call__(self, docs: list[Document]) -> str: | |
| """Format the Documents to markdown. | |
| Args: | |
| docs (list[Documents]): List of Langchain documents | |
| Returns: | |
| docs (str): | |
| """ | |
| return f"\n---\n".join( | |
| [ | |
| f"- {self.prefix} {i+1}:\n\n\t" + d.page_content | |
| for i, d in enumerate(docs) | |
| ] | |
| ) | |
| def create_langsmith_client(): | |
| """Create a Langsmith client.""" | |
| os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
| os.environ["LANGCHAIN_PROJECT"] = "talltree-ai-assistant" | |
| os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" | |
| langsmith_api_key = os.getenv("LANGCHAIN_API_KEY") | |
| if not langsmith_api_key: | |
| raise EnvironmentError("Missing environment variable: LANGCHAIN_API_KEY") | |
| return langsmith.Client() | |
| # Set up Runnable and Memory | |
| def get_rag_chain( | |
| model_name: str = "gpt-4", temperature: float = 0.2 | |
| ) -> tuple[ChatOpenAI, ConversationBufferWindowMemory]: | |
| """Set up runnable and chat memory | |
| Args: | |
| model_name (str, optional): LLM model. Defaults to "gpt-4" 30012024. | |
| temperature (float, optional): Model temperature. Defaults to 0.2. | |
| Returns: | |
| Runnable, Memory: Chain and Memory | |
| """ | |
| RETRIEVER_PARAMETERS = { | |
| "embeddings_model": "text-embedding-3-small", | |
| "k_dense_practitioners_db": 8, | |
| "k_sparse_practitioners_db": 15, | |
| "weights_ensemble_practitioners_db": [0.2, 0.8], | |
| "k_compression_practitioners_db": 10, | |
| "k_dense_talltree": 6, | |
| "k_compression_talltree": 6, | |
| } | |
| # Set up Langsmith to trace the chain | |
| langsmith_tracing = create_langsmith_client() | |
| # LLM and prompt template | |
| llm = ChatOpenAI( | |
| model_name=model_name, | |
| temperature=temperature, | |
| ) | |
| prompt = generate_prompt_template() | |
| # Set retrievers pointing to the practitioners's dataset | |
| dense_retriever_client = DenseRetrieverClient( | |
| embeddings_model=RETRIEVER_PARAMETERS["embeddings_model"], | |
| collection_name="practitioners_db", | |
| search_type="similarity", | |
| k=RETRIEVER_PARAMETERS["k_dense_practitioners_db"], | |
| ) # k x 4 using multiquery retriever | |
| # Qdrant db as a retriever | |
| practitioners_db_dense_retriever = dense_retriever_client.get_dense_retriever() | |
| # Multiquery retriever using the dense retriever | |
| # This retriever can be passed or not to the EnsembleRetriever. It uses GPT-3.5-turbo. | |
| practitioners_db_dense_multiquery_retriever = multi_query_retriever_setup( | |
| practitioners_db_dense_retriever | |
| ) | |
| # Sparse vector retriever | |
| sparse_retriever_client = SparseRetrieverClient( | |
| collection_name="practitioners_db_sparse_collection", | |
| vector_name="sparse_vector", | |
| splade_model_id="naver/splade-cocondenser-ensembledistil", | |
| k=RETRIEVER_PARAMETERS["k_sparse_practitioners_db"], | |
| ) | |
| practitioners_db_sparse_retriever = sparse_retriever_client.get_sparse_retriever() | |
| # Ensemble retriever for hyprid search (dense retriever seems to work better but the dense retriever is good for acronyms like RMT) | |
| practitioners_ensemble_retriever = EnsembleRetriever( | |
| retrievers=[ | |
| practitioners_db_dense_retriever, | |
| practitioners_db_sparse_retriever, | |
| ], | |
| weights=RETRIEVER_PARAMETERS["weights_ensemble_practitioners_db"], | |
| ) | |
| # Compression retriever for practitioners db | |
| practitioners_db_compression_retriever = compression_retriever_setup( | |
| practitioners_ensemble_retriever, | |
| embeddings_model=RETRIEVER_PARAMETERS["embeddings_model"], | |
| k=RETRIEVER_PARAMETERS["k_compression_practitioners_db"], | |
| ) | |
| # Set retrievers pointing to the tall_tree_db | |
| dense_retriever_client = DenseRetrieverClient( | |
| embeddings_model=RETRIEVER_PARAMETERS["embeddings_model"], | |
| collection_name="tall_tree_db", | |
| search_type="similarity", | |
| k=RETRIEVER_PARAMETERS["k_dense_talltree"], | |
| ) | |
| tall_tree_db_dense_retriever = dense_retriever_client.get_dense_retriever() | |
| # Compression retriever for tall_tree_db | |
| tall_tree_db_compression_retriever = compression_retriever_setup( | |
| tall_tree_db_dense_retriever, | |
| embeddings_model=RETRIEVER_PARAMETERS["embeddings_model"], | |
| k=RETRIEVER_PARAMETERS["k_compression_talltree"], | |
| ) | |
| # Set conversation history window memory. It only uses the last k interactions. | |
| memory = ConversationBufferWindowMemory( | |
| memory_key="history", | |
| return_messages=True, | |
| k=8, | |
| ) | |
| # Set up runnable using LCEL | |
| setup_and_retrieval = { | |
| "practitioners_db": itemgetter("message") | |
| | practitioners_db_compression_retriever | |
| | DocumentFormatter("Practitioner #"), | |
| "tall_tree_db": itemgetter("message") | |
| | tall_tree_db_dense_retriever | |
| | DocumentFormatter("No."), | |
| "history": RunnableLambda(memory.load_memory_variables) | itemgetter("history"), | |
| "message": itemgetter("message"), | |
| } | |
| chain = setup_and_retrieval | prompt | llm | StrOutputParser() | |
| return chain, memory | |