Spaces:
Runtime error
Runtime error
File size: 5,456 Bytes
23866f0 40f369c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.pipelines import pipeline
from sentence_transformers import SentenceTransformer, util
import numpy as np
import gradio.themes as grthemes
# Paraphrasing model: humarin/chatgpt_paraphraser_on_T5_base
PARAPHRASE_MODEL_NAME = "humarin/chatgpt_paraphraser_on_T5_base"
paraphrase_tokenizer = AutoTokenizer.from_pretrained(PARAPHRASE_MODEL_NAME)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(PARAPHRASE_MODEL_NAME)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
paraphrase_model = paraphrase_model.to(device)
# AI Detector: roberta-base-openai-detector
ai_detector = pipeline("text-classification", model="roberta-base-openai-detector", device=0 if torch.cuda.is_available() else -1)
# Semantic similarity model
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
tone_templates = {
"Academic": "Paraphrase the following text in a formal, academic tone:",
"Casual": "Paraphrase the following text in a casual, conversational tone:",
"Friendly": "Paraphrase the following text in a friendly, approachable tone:",
"Stealth": "Paraphrase the following text to bypass AI detectors and sound as human as possible:",
}
# Paraphrasing function
def paraphrase(text, tone):
prompt = tone_templates[tone] + " " + text
input_ids = paraphrase_tokenizer(
f'paraphrase: {prompt}',
return_tensors="pt", padding="longest",
max_length=256, truncation=True
).input_ids.to(device)
outputs = paraphrase_model.generate(
input_ids,
temperature=0.7,
repetition_penalty=1.2,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=256,
diversity_penalty=3.0,
num_beams=5,
num_beam_groups=5,
trust_remote_code=True
)
res = paraphrase_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res[0] if res else ""
def semantic_similarity(text1, text2):
emb1 = similarity_model.encode(text1, convert_to_tensor=True)
emb2 = similarity_model.encode(text2, convert_to_tensor=True)
sim = util.pytorch_cos_sim(emb1, emb2).item()
return sim
def ai_detect(text):
# Returns probability of being AI-generated (label 'Fake')
result = ai_detector(text)
for r in result:
if r['label'] == 'Fake':
return r['score']
elif r['label'] == 'Real':
return 1.0 - r['score']
return 0.5 # fallback
def humanization_score(sim, ai_prob):
# Lower similarity and lower AI probability = more human
score = (1.0 - sim) * 0.5 + (1.0 - ai_prob) * 0.5
return score
def humanization_rating(score):
if score < 0.7:
return f"⚠️ Still robotic ({score:.2f})"
elif score < 0.85:
return f"👍 Acceptable ({score:.2f})"
else:
return f"✅ Highly Human ({score:.2f})"
def process(text, tone):
if not text.strip():
return "", "", 0.0, "", 0.0
# Pre-humanization AI detection
pre_ai_prob = ai_detect(text)
# Paraphrase
paraphrased = paraphrase(text, tone)
# Post-humanization AI detection
post_ai_prob = ai_detect(paraphrased)
# Semantic similarity
sim = semantic_similarity(text, paraphrased)
# Humanization score
score = humanization_score(sim, post_ai_prob)
rating = humanization_rating(score)
ai_score_str = f"Pre: {pre_ai_prob*100:.1f}% | Post: {post_ai_prob*100:.1f}%"
return (
paraphrased, # gr.Textbox (string)
ai_score_str, # gr.Markdown (string)
sim, # gr.Number (float)
rating, # gr.Markdown (string)
score * 100 # gr.Number (float)
)
# Custom dark theme using gradio.themes.Base
custom_theme = grthemes.Base(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate"
)
with gr.Blocks(theme=custom_theme) as demo:
gr.Markdown("""
# 🧠 AI Humanizer
<div style='display:flex;justify-content:space-between;align-items:center;'>
<span style='font-size:1.2em;color:#7bb1ff;'>Rewrite AI text to sound 100% human</span>
<span style='font-weight:bold;color:#7bb1ff;'>Made by Taha</span>
</div>
""", elem_id="header")
with gr.Row():
with gr.Column():
text_in = gr.Textbox(label="Paste AI-generated text here", lines=8, placeholder="Paste your text...")
tone = gr.Radio(["Academic", "Casual", "Friendly", "Stealth"], value="Stealth", label="Tone Selector")
btn = gr.Button("Humanize", elem_id="humanize-btn")
with gr.Column():
text_out = gr.Textbox(label="Humanized Output", lines=8, interactive=False)
ai_scores = gr.Markdown("", elem_id="ai-scores")
sim_score = gr.Number(label="Similarity (0=very different, 1=very similar)", interactive=False)
rating = gr.Markdown("", elem_id="rating")
human_score = gr.Number(label="Humanization Score (%)", interactive=False)
btn.click(
process,
inputs=[text_in, tone],
outputs=[text_out, ai_scores, sim_score, rating, human_score],
api_name="humanize"
)
gr.Markdown("""
<div style='text-align:center;color:#7bb1ff;margin-top:2em;'>
<b>Made by Taha</b> | Free for unlimited use | Optimized for students
</div>
""", elem_id="footer")
demo.launch() |