SkyReels-V2 / app_df.py
svjack's picture
Update app_df.py
b742f12 verified
'''
pip install -r requirements.txt
pip uninstall -y torch torchvision xformers && pip install torch==2.5.0 torchvision xformers
pip install flash_attn-2.7.4.post1+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
'''
'''
import os
import gc
import time
import random
import torch
import imageio
from diffusers.utils import load_image
from skyreels_v2_infer import DiffusionForcingPipeline
from skyreels_v2_infer.modules import download_model
from skyreels_v2_infer.pipelines import PromptEnhancer, resizecrop
# ---------------------
# 全局初始化部分(只执行一次)
# ---------------------
is_shared_ui = True
model_id = download_model("Skywork/SkyReels-V2-DF-1.3B-540P") if is_shared_ui else None
# 预设分辨率参数
RESOLUTION_CONFIG = {
"540P": (544, 960),
"720P": (720, 1280)
}
# 负向提示词(固定)
negative_prompt = (
"Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, "
"overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, "
"poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, "
"three legs, many people in the background, walking backwards"
)
# 初始化 pipeline(只初始化一次)
pipe = DiffusionForcingPipeline(
model_id,
dit_path=model_id,
device=torch.device("cuda"),
weight_dtype=torch.bfloat16,
use_usp=False,
offload=True,
)
# ---------------------
# 函数定义部分
# ---------------------
def generate_diffusion_forced_video(
prompt,
image=None,
target_length="10",
model_id="Skywork/SkyReels-V2-DF-1.3B-540P",
resolution="540P",
num_frames=257,
ar_step=0,
causal_attention=False,
causal_block_size=1,
base_num_frames=97,
overlap_history=17,
addnoise_condition=20,
guidance_scale=6.0,
shift=8.0,
inference_steps=30,
use_usp=False,
offload=True,
fps=24,
seed=None,
prompt_enhancer=False,
teacache=True,
teacache_thresh=0.2,
use_ret_steps=True,
):
"""
使用已初始化的 pipeline 进行视频生成,仅需传入动态参数
"""
# 获取分辨率
if resolution not in RESOLUTION_CONFIG:
raise ValueError(f"Invalid resolution: {resolution}")
height, width = RESOLUTION_CONFIG[resolution]
# 设置种子
if seed is None:
random.seed(time.time())
seed = int(random.randrange(4294967294))
# 检查长视频参数
if num_frames > base_num_frames and overlap_history is None:
raise ValueError("Specify `overlap_history` for long video generation. Try 17 or 37.")
if addnoise_condition > 60:
print("Warning: Large `addnoise_condition` may reduce consistency. Recommended: 20.")
# 图像处理
pil_image = None
if image is not None:
pil_image = load_image(image).convert("RGB")
image_width, image_height = pil_image.size
if image_height > image_width:
height, width = width, height
pil_image = resizecrop(pil_image, height, width)
# 提示词增强
prompt_input = prompt
if prompt_enhancer and pil_image is None:
enhancer = PromptEnhancer()
prompt_input = enhancer(prompt_input)
del enhancer
gc.collect()
torch.cuda.empty_cache()
# TeaCache 初始化(如启用)
if teacache:
if ar_step > 0:
num_steps = (
inference_steps + (((base_num_frames - 1) // 4 + 1) // causal_block_size - 1) * ar_step
)
else:
num_steps = inference_steps
pipe.transformer.initialize_teacache(
enable_teacache=True,
num_steps=num_steps,
teacache_thresh=teacache_thresh,
use_ret_steps=use_ret_steps,
ckpt_dir=model_id,
)
# 是否开启因果注意力
if causal_attention:
pipe.transformer.set_ar_attention(causal_block_size)
# 生成视频
with torch.amp.autocast("cuda", dtype=pipe.transformer.dtype), torch.no_grad():
video_frames = pipe(
prompt=prompt_input,
negative_prompt=negative_prompt,
image=pil_image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=inference_steps,
shift=shift,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
overlap_history=overlap_history,
addnoise_condition=addnoise_condition,
base_num_frames=base_num_frames,
ar_step=ar_step,
causal_block_size=causal_block_size,
fps=fps,
)[0]
# 保存视频
os.makedirs("gradio_df_videos", exist_ok=True)
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_path = f"gradio_df_videos/{prompt[:50].replace('/', '')}_{seed}_{timestamp}.mp4"
imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])
return output_path
import os
from datasets import load_dataset
from PIL import Image
from diffusers.utils import load_image
# 加载数据集
dataset = load_dataset("svjack/Mavuika_PosterCraft_Product_Posters_WAV")["train"]
# 初始化输出目录
output_dir = "Mavuika_generated_videos"
os.makedirs(output_dir, exist_ok=True)
# 循环遍历数据集
for idx, item in enumerate(dataset):
try:
# 获取图像和提示词
pil_image = item["postercraft_image"]
prompt = item["final_prompt"]
# 保存原始图片为临时文件供 generate_diffusion_forced_video 使用
temp_input_path = f"temp_input_{idx:04d}.png"
pil_image.resize((544, 960)).save(temp_input_path)
# 调用视频生成函数
video_path = generate_diffusion_forced_video(
prompt=prompt,
image=temp_input_path,
target_length="4", # 可选参数,实际使用 height/width 控制长度
model_id="Skywork/SkyReels-V2-DF-1.3B-540P",
resolution="540P",
num_frames=97,
ar_step=0,
causal_attention=False,
causal_block_size=1,
base_num_frames=97,
overlap_history=3,
addnoise_condition=0,
guidance_scale=6,
shift=8,
inference_steps=30,
use_usp=False,
offload=True,
fps=24,
seed=None,
prompt_enhancer=False,
teacache=True,
teacache_thresh=0.2,
use_ret_steps=True,
)
# 构建输出路径
output_video_path = os.path.join(output_dir, f"{idx:04d}.mp4")
output_txt_path = os.path.join(output_dir, f"{idx:04d}.txt")
# 移动视频文件到输出目录
os.rename(video_path, output_video_path)
# 保存 prompt 到 .txt 文件
with open(output_txt_path, 'w', encoding='utf-8') as f:
f.write(prompt)
print(f"✅ 已生成并保存:{output_video_path}")
except Exception as e:
print(f"❌ 处理第 {idx} 张图片时出错: {e}")
'''
import os
import gc
import time
import random
import torch
import imageio
import gradio as gr
from diffusers.utils import load_image
from skyreels_v2_infer import DiffusionForcingPipeline
from skyreels_v2_infer.modules import download_model
from skyreels_v2_infer.pipelines import PromptEnhancer, resizecrop
is_shared_ui = True if "fffiloni/SkyReels-V2" in os.environ['SPACE_ID'] else False
#is_shared_ui = False
model_id = None
if is_shared_ui:
model_id = download_model("Skywork/SkyReels-V2-DF-1.3B-540P")
def generate_diffusion_forced_video(
prompt,
image=None,
target_length="10",
model_id="Skywork/SkyReels-V2-DF-1.3B-540P",
resolution="540P",
num_frames=257,
ar_step=0,
causal_attention=False,
causal_block_size=1,
base_num_frames=97,
overlap_history=17,
addnoise_condition=20,
guidance_scale=6.0,
shift=8.0,
inference_steps=30,
use_usp=False,
offload=True,
fps=24,
seed=None,
prompt_enhancer=False,
teacache=True,
teacache_thresh=0.2,
use_ret_steps=True,
):
model_id = download_model(model_id)
if resolution == "540P":
height, width = 544, 960
elif resolution == "720P":
height, width = 720, 1280
else:
raise ValueError(f"Invalid resolution: {resolution}")
if seed is None:
random.seed(time.time())
seed = int(random.randrange(4294967294))
if num_frames > base_num_frames and overlap_history is None:
raise ValueError("Specify `overlap_history` for long video generation. Try 17 or 37.")
if addnoise_condition > 60:
print("Warning: Large `addnoise_condition` may reduce consistency. Recommended: 20.")
if image is not None:
image = load_image(image).convert("RGB")
image_width, image_height = image.size
if image_height > image_width:
height, width = width, height
image = resizecrop(image, height, width)
negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
prompt_input = prompt
if prompt_enhancer and image is None:
enhancer = PromptEnhancer()
prompt_input = enhancer(prompt_input)
del enhancer
gc.collect()
torch.cuda.empty_cache()
pipe = DiffusionForcingPipeline(
model_id,
dit_path=model_id,
device=torch.device("cuda"),
weight_dtype=torch.bfloat16,
use_usp=use_usp,
offload=offload,
)
if causal_attention:
pipe.transformer.set_ar_attention(causal_block_size)
if teacache:
if ar_step > 0:
num_steps = (
inference_steps + (((base_num_frames - 1) // 4 + 1) // causal_block_size - 1) * ar_step
)
else:
num_steps = inference_steps
pipe.transformer.initialize_teacache(
enable_teacache=True,
num_steps=num_steps,
teacache_thresh=teacache_thresh,
use_ret_steps=use_ret_steps,
ckpt_dir=model_id,
)
with torch.amp.autocast("cuda", dtype=pipe.transformer.dtype), torch.no_grad():
video_frames = pipe(
prompt=prompt_input,
negative_prompt=negative_prompt,
image=image,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=inference_steps,
shift=shift,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
overlap_history=overlap_history,
addnoise_condition=addnoise_condition,
base_num_frames=base_num_frames,
ar_step=ar_step,
causal_block_size=causal_block_size,
fps=fps,
)[0]
os.makedirs("gradio_df_videos", exist_ok=True)
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_path = f"gradio_df_videos/{prompt[:50].replace('/', '')}_{seed}_{timestamp}.mp4"
imageio.mimwrite(output_path, video_frames, fps=fps, quality=8, output_params=["-loglevel", "error"])
return output_path
# Gradio UI
resolution_options = ["540P", "720P"]
model_options = ["Skywork/SkyReels-V2-DF-1.3B-540P"] # Update if there are more
if is_shared_ui is False:
model_options = [
"Skywork/SkyReels-V2-DF-1.3B-540P",
"Skywork/SkyReels-V2-DF-14B-540P",
"Skywork/SkyReels-V2-DF-14B-720P"
]
length_options = []
if is_shared_ui is True:
length_options = ["4", "10"]
else:
length_options = ["4", "10", "15", "30", "60"]
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# SkyReels V2: Infinite-Length Film Generation")
gr.Markdown("The first open-source video generative model employing AutoRegressive Diffusion-Forcing architecture that achieves the SOTA performance among publicly available models.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/SkyworkAI/SkyReels-V2">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/pdf/2504.13074">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/SkyReels-V2?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
if is_shared_ui:
target_length = gr.Radio(label="Video length target", choices=length_options, value="4")
forbidden_length = gr.Radio(label="Available target on duplicated instance", choices=["15","30","60"], value=None, interactive=False)
else:
target_length = gr.Radio(label="Video length target", choices=length_options, value="4")
num_frames = gr.Slider(minimum=17, maximum=257, value=97, step=20, label="Number of Frames", interactive=False)
image = gr.Image(type="filepath", label="Input Image (optional)")
with gr.Accordion("Advanced Settings", open=False):
model_id = gr.Dropdown(choices=model_options, value=model_options[0], label="Model ID")
resolution = gr.Radio(choices=resolution_options, value="540P", label="Resolution", interactive=False if is_shared_ui else True)
ar_step = gr.Number(label="AR Step", value=0)
causal_attention = gr.Checkbox(label="Causal Attention")
causal_block_size = gr.Number(label="Causal Block Size", value=1)
base_num_frames = gr.Number(label="Base Num Frames", value=97)
overlap_history = gr.Number(label="Overlap History (set for long videos)", value=None)
addnoise_condition = gr.Number(label="AddNoise Condition", value=0)
guidance_scale = gr.Slider(minimum=1.0, maximum=20.0, value=6.0, step=0.1, label="Guidance Scale")
shift = gr.Slider(minimum=0.0, maximum=20.0, value=8.0, step=0.1, label="Shift")
inference_steps = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Inference Steps")
use_usp = gr.Checkbox(label="Use USP", visible=False if is_shared_ui else True)
offload = gr.Checkbox(label="Offload", value=True, interactive=False if is_shared_ui else True)
fps = gr.Slider(minimum=1, maximum=60, value=24, step=1, label="FPS")
seed = gr.Number(label="Seed (optional)", precision=0)
prompt_enhancer = gr.Checkbox(label="Prompt Enhancer", visible=False if is_shared_ui else True)
use_teacache = gr.Checkbox(label="Use TeaCache", value=True)
teacache_thresh = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.01, label="TeaCache Threshold")
use_ret_steps = gr.Checkbox(label="Use Retention Steps", value=True)
submit_btn = gr.Button("Generate")
with gr.Column():
output_video = gr.Video(label="Generated Video")
gr.Examples(
examples = [
["A graceful white swan with a curved neck and delicate feathers swimming in a serene lake at dawn, its reflection perfectly mirrored in the still water as mist rises from the surface, with the swan occasionally dipping its head into the water to feed.", "./examples/swan.jpeg", "10"],
# ["A graceful white swan with a curved neck and delicate feathers swimming in a serene lake at dawn, its reflection perfectly mirrored in the still water as mist rises from the surface, with the swan occasionally dipping its head into the water to feed.", None],
["A sea turtle swimming near a shipwreck", "./examples/turtle.jpeg", "10"],
# ["A sea turtle swimming near a shipwreck", None],
],
fn = generate_diffusion_forced_video,
inputs = [prompt, image, target_length],
outputs = [output_video],
cache_examples = True,
cache_mode = "lazy"
)
def set_num_frames(target_l):
n_frames = 0
overlap_history = 0
addnoise_condition = 0
ar_step = 0
causal_attention = False
causal_block_size = 1
use_teacache = True
teacache_thresh = 0.2
use_ret_steps = True
if target_l == "4":
n_frames = 97
use_teacache = True
teacache_thresh = 0.2
use_ret_steps = True
elif target_l == "10":
n_frames = 257
overlap_history = 17
addnoise_condition = 20
use_teacache = True
teacache_thresh = 0.2
use_ret_steps = True
elif target_l == "15":
n_frames = 377
overlap_history = 17
addnoise_condition = 20
use_teacache = True
teacache_thresh = 0.3
use_ret_steps = True
elif target_l == "30":
n_frames = 737
overlap_history = 17
addnoise_condition = 20
use_teacache = True
teacache_thresh = 0.3
use_ret_steps = True
causal_attention = False
ar_step = 0
causal_block_size = 1
elif target_l == "60":
n_frames = 1457
overlap_history = 17
addnoise_condition = 20
use_teacache = True
teacache_thresh = 0.3
use_ret_steps = True
causal_attention = False
ar_step = 0
causal_block_size = 0
return n_frames, overlap_history, addnoise_condition, ar_step, causal_attention, causal_block_size, use_teacache, teacache_thresh, use_ret_steps
target_length.change(
fn = set_num_frames,
inputs = [target_length],
outputs = [num_frames, overlap_history, addnoise_condition, ar_step, causal_attention, causal_block_size, use_teacache, teacache_thresh, use_ret_steps],
queue = False
)
submit_btn.click(
fn = generate_diffusion_forced_video,
inputs = [
prompt,
image,
target_length,
model_id,
resolution,
num_frames,
ar_step,
causal_attention,
causal_block_size,
base_num_frames,
overlap_history,
addnoise_condition,
guidance_scale,
shift,
inference_steps,
use_usp,
offload,
fps,
seed,
prompt_enhancer,
use_teacache,
teacache_thresh,
use_ret_steps
],
outputs = [
output_video
]
)
#demo.launch(show_error=True, show_api=False, share=False)
demo.launch(show_error=True, show_api=True, share=True)