sae_flux / SDLens /cache_and_edit /cached_pipeline.py
surokpro2's picture
Upload 47 files
215c4b7 verified
from collections import defaultdict
from functools import partial
import gc
from typing import Callable, Dict, List, Literal, Union, Optional, Type, Union
import torch
from SDLens.cache_and_edit.activation_cache import FluxActivationCache, ModelActivationCache, PixartActivationCache, ActivationCacheHandler
from diffusers.models.transformers.transformer_flux import FluxTransformerBlock, FluxSingleTransformerBlock
from SDLens.cache_and_edit.hooks import locate_block, register_general_hook, fix_inf_values_hook, edit_streams_hook
from SDLens.cache_and_edit.qkv_cache import QKVCacheFluxHandler, QKVCache, CachedFluxAttnProcessor3_0
from SDLens.cache_and_edit.scheduler_inversion import FlowMatchEulerDiscreteSchedulerForInversion
from SDLens.cache_and_edit.flux_pipeline import EditedFluxPipeline
from diffusers.pipelines import FluxPipeline
class CachedPipeline:
def __init__(self, pipe: EditedFluxPipeline, text_seq_length: int = 512):
assert isinstance(pipe, EditedFluxPipeline) or isinstance(pipe, FluxPipeline), "Use EditedFluxPipeline class in `cache_and_edit/flux_pipeline.py`"
self.pipe = pipe
self.text_seq_length = text_seq_length
# Cache handlers
self.activation_cache_handler = None
self.qkv_cache_handler = None
# keeps references to all registered hooks
self.registered_hooks = []
def setup_cache(self, use_activation_cache = True,
use_qkv_cache = False,
positions_to_cache: List[str] = None,
positions_to_cache_foreground: List[str] = None,
qkv_to_inject: QKVCache = None,
inject_kv_mode: Literal["image", "text", "both"] = None,
q_mask=None,
processor_class: Optional[Type] = CachedFluxAttnProcessor3_0
) -> None:
"""
Sets up activation_cache and/or qkv_cache, setting the required hooks.
If positions_to_cache is None, then all modules will be cached.
If inject_kv_mode is None, then qkv cache will be stored, otherwise qkv_to_inject will be injected.
"""
if use_activation_cache:
if isinstance(self.pipe, EditedFluxPipeline) or isinstance(self.pipe, FluxPipeline):
activation_cache = FluxActivationCache()
else:
raise AssertionError(f"activation cache not implemented for {type(self.pipe)}")
self.activation_cache_handler = ActivationCacheHandler(activation_cache, positions_to_cache)
# register hooks crated by activation_cache
self._set_hooks(position_hook_dict=self.activation_cache_handler.forward_hooks_dict,
with_kwargs=True)
if use_qkv_cache:
if isinstance(self.pipe, EditedFluxPipeline) or isinstance(self.pipe, FluxPipeline):
self.qkv_cache_handler = QKVCacheFluxHandler(self.pipe,
positions_to_cache,
positions_to_cache_foreground,
inject_kv=inject_kv_mode,
text_seq_length=self.text_seq_length,
q_mask=q_mask,
processor_class=processor_class,
)
else:
raise AssertionError(f"QKV cache not implemented for {type(self.pipe)}")
# qkv_cache does not use hooks
@property
def activation_cache(self) -> ModelActivationCache:
return self.activation_cache_handler.cache if hasattr(self, "activation_cache_handler") and self.activation_cache_handler else None
@property
def qkv_cache(self) -> QKVCache:
return self.qkv_cache_handler.cache if hasattr(self, "qkv_cache_handler") and self.qkv_cache_handler else None
@torch.no_grad
def run(self,
prompt: Union[str, List[str]],
num_inference_steps: int = 1,
seed: int = 42,
width=1024,
height=1024,
cache_activations: bool = False,
cache_qkv: bool = False,
guidance_scale: float = 0.0,
positions_to_cache: List[str] = None,
empty_clip_embeddings: bool = True,
inverse: bool = False,
**kwargs):
"""run the pipeline, possibly cachine activations or QKV.
Args:
prompt (str): Prompt to run the pipeline (NOTE: for Flux, parameters passed are prompt='' and prompt2=prompt)
num_inference_steps (int, optional): Num steps for inference. Defaults to 1.
seed (int, optional): seed for generators. Defaults to 42.
cache_activations (bool, optional): Whether to cache activations. Defaults to True.
cache_qkv (bool, optional): Whether to cache queries, keys, values. Defaults to False.
positions_to_cache (List[str], optional): list of blocks to cache.
If None, all transformer blocks will be cached. Defaults to None.
Returns:
_type_: same output as wrapped pipeline.
"""
# First, clear all registered hooks
self.clear_all_hooks()
# Delete cache already present
if self.activation_cache or self.qkv_cache:
if self.activation_cache:
del(self.activation_cache_handler.cache)
del(self.activation_cache_handler)
if self.qkv_cache:
# Necessary to delete the old cache.
self.qkv_cache_handler.clear_cache()
del(self.qkv_cache_handler)
gc.collect() # force Python to clean up unreachable objects
torch.cuda.empty_cache() # tell PyTorch to release unused GPU memory from its cache
# Setup cache again for the current inference pass
self.setup_cache(cache_activations, cache_qkv, positions_to_cache, inject_kv_mode=None)
assert isinstance(seed, int)
if isinstance(prompt, str):
empty_prompt = [""]
prompt = [prompt]
else:
empty_prompt = [""] * len(prompt)
gen = [torch.Generator(device="cpu").manual_seed(seed) for _ in range(len(prompt))]
if inverse:
# maybe create scheduler for inversion
if not hasattr(self, "inversion_scheduler"):
self.inversion_scheduler = FlowMatchEulerDiscreteSchedulerForInversion.from_config(
self.pipe.scheduler.config,
inverse=True
)
self.og_scheduler = self.pipe.scheduler
self.pipe.scheduler = self.inversion_scheduler
output = self.pipe(
prompt=empty_prompt if empty_clip_embeddings else prompt,
prompt_2=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
width=width,
height=height,
**kwargs
)
# Restore original scheduler
if inverse:
self.pipe.scheduler = self.og_scheduler
return output
@torch.no_grad
def run_inject_qkv(self,
prompt: Union[str, List[str]],
positions_to_inject: List[str] = None,
positions_to_inject_foreground: List[str] = None,
inject_kv_mode: Literal["image", "text", "both"] = "image",
num_inference_steps: int = 1,
guidance_scale: float = 0.0,
seed: int = 42,
empty_clip_embeddings: bool = True,
q_mask=None,
width: int = 1024,
height: int = 1024,
processor_class: Optional[Type] = CachedFluxAttnProcessor3_0,
**kwargs):
"""run the pipeline, possibly cachine activations or QKV.
Args:
prompt (str): Prompt to run the pipeline (NOTE: for Flux, parameters passed are prompt='' and prompt2=prompt)
num_inference_steps (int, optional): Num steps for inference. Defaults to 1.
seed (int, optional): seed for generators. Defaults to 42.
cache_activations (bool, optional): Whether to cache activations. Defaults to True.
cache_qkv (bool, optional): Whether to cache queries, keys, values. Defaults to False.
positions_to_cache (List[str], optional): list of blocks to cache.
If None, all transformer blocks will be cached. Defaults to None.
Returns:
_type_: same output as wrapped pipeline.
"""
# First, clear all registered hooks
self.clear_all_hooks()
# Delete previous QKVCache
if hasattr(self, "qkv_cache_handler") and self.qkv_cache_handler is not None:
self.qkv_cache_handler.clear_cache()
del(self.qkv_cache_handler)
gc.collect() # force Python to clean up unreachable objects
torch.cuda.empty_cache() # tell PyTorch to release unused GPU memory from its cache
# Will setup existing QKV cache to be injected
self.setup_cache(use_activation_cache=False,
use_qkv_cache=True,
positions_to_cache=positions_to_inject,
positions_to_cache_foreground=positions_to_inject_foreground,
inject_kv_mode=inject_kv_mode,
q_mask=q_mask,
processor_class=processor_class,
)
self.qkv_cache_handler
assert isinstance(seed, int)
if isinstance(prompt, str):
empty_prompt = [""]
prompt = [prompt]
else:
empty_prompt = [""] * len(prompt)
gen = [torch.Generator(device="cpu").manual_seed(seed) for _ in range(len(prompt))]
output = self.pipe(
prompt=empty_prompt if empty_clip_embeddings else prompt,
prompt_2=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
width=width,
height=height,
**kwargs
)
return output
def clear_all_hooks(self):
# 1. Clear all registered hooks
for hook in self.registered_hooks:
hook.remove()
self.registered_hooks = []
# 2. Eventually clear other hooks registered in the pipeline but not present here
# TODO: make it general for other models
for i in range(len(locate_block(self.pipe, "transformer.transformer_blocks"))):
locate_block(self.pipe, f"transformer.transformer_blocks.{i}")._forward_hooks.clear()
for i in range(len(locate_block(self.pipe, "transformer.single_transformer_blocks"))):
locate_block(self.pipe, f"transformer.single_transformer_blocks.{i}")._forward_hooks.clear()
def _set_hooks(self,
position_hook_dict: Dict[str, List[Callable]] = {},
position_pre_hook_dict: Dict[str, List[Callable]] = {},
with_kwargs=False
):
'''
Set hooks at specified positions and register them.
Args:
position_hook_dict: A dictionary mapping positions to hooks.
The keys are positions in the pipeline where the hooks should be registered.
The values are either a single hook or a list of hooks to be registered at the specified position.
Each hook should be a callable that takes three arguments: (module, input, output).
**kwargs: Keyword arguments to pass to the pipeline.
'''
# Register hooks
for is_pre_hook, hook_dict in [(True, position_pre_hook_dict), (False, position_hook_dict)]:
for position, hook in hook_dict.items():
assert isinstance(hook, list)
for h in hook:
self.registered_hooks.append(register_general_hook(self.pipe, position, h, with_kwargs, is_pre_hook))
def run_with_edit(self,
prompt: str,
edit_fn: callable,
layers_for_edit_fn: List[int],
stream: Literal['text', 'image', 'both'],
guidance_scale: float = 0.0,
seed=42,
num_inference_steps=1,
empty_clip_embeddings: bool = True,
width: int = 1024,
height: int = 1024,
**kwargs,
):
assert isinstance(seed, int)
self.clear_all_hooks()
# Setup hooks for edit_fn at the specified layers
# NOTE: edit_fn_hooks has to be Dict[str, List[Callable]]
edit_fn_hooks = {f"transformer.transformer_blocks.{layer}": [lambda *args: edit_streams_hook(*args, recompute_fn=edit_fn, stream=stream)]
for layer in layers_for_edit_fn if layer < 19}
edit_fn_hooks.update({f"transformer.single_transformer_blocks.{layer - 19}": [lambda *args: edit_streams_hook(*args, recompute_fn=edit_fn, stream=stream)]
for layer in layers_for_edit_fn if layer >= 19})
# register hooks in the pipe
self._set_hooks(position_hook_dict=edit_fn_hooks, with_kwargs=True)
# Create generators
if isinstance(prompt, str):
empty_prompt = [""]
prompt = [prompt]
else:
empty_prompt = [""] * len(prompt)
gen = [torch.Generator(device="cpu").manual_seed(seed) for _ in range(len(prompt))]
with torch.no_grad():
output = self.pipe(
prompt=empty_prompt if empty_clip_embeddings else prompt,
prompt_2=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=gen,
width=width,
height=height,
**kwargs
)
return output