File size: 5,491 Bytes
215c4b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from typing import Callable, List, Optional
import torch

class TimedHook:
    def __init__(self, hook_fn, total_steps, apply_at_steps=None):
        self.hook_fn = hook_fn
        self.total_steps = total_steps
        self.apply_at_steps = apply_at_steps
        self.current_step = 0

    def identity(self, module, input, output):
        return output

    def __call__(self, module, input, output):
        if self.apply_at_steps is not None:
            if self.current_step in self.apply_at_steps:
                self.__increment()
                return self.hook_fn(module, input, output)
            else:
                self.__increment()
                return self.identity(module, input, output)

        return self.identity(module, input, output)

    def __increment(self):
        if self.current_step < self.total_steps:
            self.current_step += 1
        else:
            self.current_step = 0

@torch.no_grad()
def add_feature(sae, feature_idx, value, module, input, output):
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    activated = sae.encode(diff)
    mask = torch.zeros_like(activated, device=diff.device)
    mask[..., feature_idx] = value
    to_add = mask @ sae.decoder.weight.T
    return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)

@torch.no_grad()
def add_feature_on_area_base(sae, feature_idx, activation_map, module, input, output):
    return add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output)

@torch.no_grad()
def add_feature_on_area_base_both(sae, feature_idx, activation_map, module, input, output):
    # add the feature to cond and subtract from uncond
    # this assumes diff.shape[0] == 2
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    activated = sae.encode(diff)
    mask = torch.zeros_like(activated, device=diff.device)
    if len(activation_map) == 2:
        activation_map = activation_map.unsqueeze(0)
    mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
    to_add = mask @ sae.decoder.weight.T
    to_add = to_add.chunk(2)
    output[0][0] -= to_add[0].permute(0, 3, 1, 2).to(output[0].device)[0]
    output[0][1] += to_add[1].permute(0, 3, 1, 2).to(output[0].device)[0]
    return output


@torch.no_grad()
def add_feature_on_area_base_cond(sae, feature_idx, activation_map, module, input, output):
    # add the feature to cond
    # this assumes diff.shape[0] == 2
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    diff_uncond, diff_cond = diff.chunk(2)
    activated = sae.encode(diff_cond)
    mask = torch.zeros_like(activated, device=diff_cond.device)
    if len(activation_map) == 2:
        activation_map = activation_map.unsqueeze(0)
    mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
    to_add = mask @ sae.decoder.weight.T
    output[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
    return output


@torch.no_grad()
def replace_with_feature_base(sae, feature_idx, value, module, input, output):
    # this assumes diff.shape[0] == 2
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    diff_uncond, diff_cond = diff.chunk(2)
    activated = sae.encode(diff_cond)
    mask = torch.zeros_like(activated, device=diff_cond.device)
    mask[..., feature_idx] = value
    to_add = mask @ sae.decoder.weight.T
    input[0][1] += to_add.permute(0, 3, 1, 2).to(output[0].device)[0]
    return input


@torch.no_grad()
def add_feature_on_area_turbo(sae, feature_idx, activation_map, module, input, output):
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    activated = sae.encode(diff)
    mask = torch.zeros_like(activated, device=diff.device)
    if len(activation_map) == 2:
        activation_map = activation_map.unsqueeze(0)
    mask[..., feature_idx] = mask[..., feature_idx] = activation_map.to(mask.device)
    to_add = mask @ sae.decoder.weight.T
    return (output[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)

@torch.no_grad
def add_feature_on_area_flux(
    sae,
    feature_idx,
    activation_map,
    module,
    input: torch.Tensor, 
    output: torch.Tensor,
    ):

    diff = (output - input).to(sae.device)
    activated = sae.encode(diff)

    # TODO: check
    if len(activation_map) == 2:
        activation_map = activation_map.unsqueeze(0)
    mask = torch.zeros_like(activated, device=diff.device)
    activation_map = activation_map.flatten()
    mask[..., feature_idx] = activation_map.to(mask.device)
    to_add = mask @ sae.decoder.weight.T
    return output + to_add.to(output.device, output.dtype)

            

@torch.no_grad()
def replace_with_feature_turbo(sae, feature_idx, value, module, input, output):
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    activated = sae.encode(diff)
    mask = torch.zeros_like(activated, device=diff.device)
    mask[..., feature_idx] = value
    to_add = mask @ sae.decoder.weight.T
    return (input[0] + to_add.permute(0, 3, 1, 2).to(output[0].device),)


@torch.no_grad()
def reconstruct_sae_hook(sae, module, input, output):
    diff = (output[0] - input[0]).permute((0, 2, 3, 1)).to(sae.device)
    activated = sae.encode(diff)
    reconstructed = sae.decoder(activated) + sae.pre_bias
    return (input[0] + reconstructed.permute(0, 3, 1, 2).to(output[0].device),)


@torch.no_grad()
def ablate_block(module, input, output):
    return input