File size: 26,511 Bytes
215c4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
# Add parent directory to sys.path
from collections import defaultdict
import gc
import os, sys
from pathlib import Path
from SDLens.cache_and_edit.flux_pipeline import EditedFluxPipeline
parent_dir = Path.cwd().parent.resolve()
if str(parent_dir) not in sys.path:
sys.path.insert(0, str(parent_dir))
from typing import Dict, List, Literal, Optional, TypedDict, Type, Union
import torch
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers import FluxPipeline
from diffusers.models.embeddings import apply_rotary_emb
from SDLens.cache_and_edit.hooks import locate_block
import torch.nn.functional as F
from diffusers.models.attention_processor import FluxAttnProcessor2_0
class QKVCache(TypedDict):
query: List[torch.Tensor]
key: List[torch.Tensor]
value: List[torch.Tensor]
class CachedFluxAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, external_cache: QKVCache,
inject_kv: Literal["image", "text", "both"]= None,
text_seq_length: int = 512):
"""Constructor for Cached attention processor.
Args:
external_cache (QKVCache): cache to store/inject values.
inject_kv (Literal["image", "text", "both"], optional): whether to inject image, text or both streams KV.
If None, it does not perform injection but the full cache is stored. Defaults to None.
"""
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.cache = external_cache
self.inject_kv = inject_kv
self.text_seq_length = text_seq_length
assert all((cache_key in external_cache) for cache_key in {"query", "key", "value"}), "Cache has to contain 'query', 'key' and 'value' keys."
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# Cache Q, K, V
if self.inject_kv == "image":
# NOTE: I am replacing key and values only for the image branch
# NOTE: in default settings, encoder_hidden_states_key_proh.shape[2] == 512
# the first element of the batch is the image whose key and value will be injected into all the other images
key[1:, :, self.text_seq_length:] = key[:1, :, self.text_seq_length:]
value[1:, :, self.text_seq_length:] = value[:1, :, self.text_seq_length:]
elif self.inject_kv == "text":
key[1:, :, :self.text_seq_length] = key[:1, :, :self.text_seq_length]
value[1:, :, :self.text_seq_length] = value[:1, :, :self.text_seq_length]
elif self.inject_kv == "both":
key[1:] = key[:1]
value[1:] = value[:1]
else: # Don't inject, store cache!
self.cache["query"].append(query)
self.cache["key"].append(key)
self.cache["value"].append(value)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class CachedFluxAttnProcessor3_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, external_cache: QKVCache,
inject_kv: Literal["image", "text", "both"]= None,
inject_kv_foreground: bool = False,
text_seq_length: int = 512,
q_mask: Optional[torch.Tensor] = None,):
"""Constructor for Cached attention processor.
Args:
external_cache (QKVCache): cache to store/inject values.
inject_kv (Literal["image", "text", "both"], optional): whether to inject image, text or both streams KV.
If None, it does not perform injection but the full cache is stored. Defaults to None.
"""
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.cache = external_cache
self.inject_kv = inject_kv
self.inject_kv_foreground = inject_kv_foreground
self.text_seq_length = text_seq_length
self.q_mask = q_mask
assert all((cache_key in external_cache) for cache_key in {"query", "key", "value"}), "Cache has to contain 'query', 'key' and 'value' keys."
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
# # Cache Q, K, V
# if self.inject_kv == "image":
# # NOTE: I am replacing key and values only for the image branch
# # NOTE: in default settings, encoder_hidden_states_key_proh.shape[2] == 512
# # the first element of the batch is the image whose key and value will be injected into all the other images
# key[1:, :, self.text_seq_length:] = key[:1, :, self.text_seq_length:]
# value[1:, :, self.text_seq_length:] = value[:1, :, self.text_seq_length:]
# elif self.inject_kv == "text":
# key[1:, :, :self.text_seq_length] = key[:1, :, :self.text_seq_length]
# value[1:, :, :self.text_seq_length] = value[:1, :, :self.text_seq_length]
# elif self.inject_kv == "both":
# key[1:] = key[:1]
# value[1:] = value[:1]
# else: # Don't inject, store cache!
# self.cache["query"].append(query)
# self.cache["key"].append(key)
# self.cache["value"].append(value)
# extend the mask to match key and values dimension:
# Shape of mask is: (num_image_tokens, 1)
mask = self.q_mask.permute(1, 0).unsqueeze(0).unsqueeze(-1) # Shape: (1, num_image_tokens, 1, 1)
# put mask on gpu
mask = mask.to(key.device)
# first check that we inject only kv in images:
if self.inject_kv is not None and self.inject_kv != "image":
raise NotImplementedError("Injecting is implemented only for images.")
# the second element of the batch is the number of heads
# The first element of the batch represents the background image, the second element of the batch
# represents the foreground image. The third element represents the image where we want to inject
# the key and value of the background image and foreground image according to the query mask.
# Inject from background (element 0) where mask is True
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# Get the index range after the text tokens
start_idx = self.text_seq_length
if self.inject_kv_foreground and self.inject_kv == "image":
key[2:, :, start_idx:] = torch.where(mask, key[1:2, :, start_idx:], key[:1, :, start_idx:])
value[2:, :, start_idx:] = torch.where(mask, value[1:2, :, start_idx:], value[:1, :, start_idx:])
elif self.inject_kv == "image" and not self.inject_kv_foreground:
key[2:, :, start_idx:] = torch.where(mask, key[2:, :, start_idx:], key[:1, :, start_idx:])
value[2:, :, start_idx:] = torch.where(mask, value[2:, :, start_idx:], value[:1, :, start_idx:])
elif self.inject_kv is None and self.inject_kv_foreground:
key[2:, :, start_idx:] = torch.where(mask, key[1:2, :, start_idx:], key[2:, :, start_idx:])
value[2:, :, start_idx:] = torch.where(mask, value[1:2, :, start_idx:], value[2:, :, start_idx:])
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# mask hidden states from bg:
# hidden_states = hidden_states_fg[:, :, start_idx:] * mask + hidden_states_bg[:, :, start_idx:] * (~mask)
# concatenate the text
#hidden_states = torch.cat([hidden_states_bg[:, :, :start_idx], hidden_states], dim=2)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
class QKVCacheFluxHandler:
"""Used to cache queries, keys and values of a FluxPipeline.
"""
def __init__(self, pipe: Union[FluxPipeline, EditedFluxPipeline],
positions_to_cache: List[str] = None,
positions_to_cache_foreground: List[str] = None,
inject_kv: Literal["image", "text", "both"] = None,
text_seq_length: int = 512,
q_mask: Optional[torch.Tensor] = None,
processor_class: Optional[Type] = CachedFluxAttnProcessor3_0
):
print(type(pipe))
if not isinstance(pipe, FluxPipeline) and not isinstance(pipe, EditedFluxPipeline):
raise NotImplementedError(f"QKVCache not yet implemented for {type(pipe)}.")
self.pipe = pipe
if positions_to_cache is not None:
self.positions_to_cache = positions_to_cache
else:
# act on all transformer layers
self.positions_to_cache = []
if positions_to_cache_foreground is not None:
self.positions_to_cache_foreground = positions_to_cache_foreground
else:
self.positions_to_cache_foreground = []
self._cache = {"query": [], "key": [], "value": []}
# Set Cached Processor to perform editing
all_layers = [f"transformer.transformer_blocks.{i}" for i in range(19)] + \
[f"transformer.single_transformer_blocks.{i}" for i in range(38)]
for module_name in all_layers:
inject_kv = "image" if module_name in self.positions_to_cache else None
inject_kv_foreground = module_name in self.positions_to_cache_foreground
module = locate_block(pipe, module_name)
module.attn.set_processor(processor_class(external_cache=self._cache,
inject_kv=inject_kv,
inject_kv_foreground=inject_kv_foreground,
text_seq_length=text_seq_length,
q_mask=q_mask,
))
@property
def cache(self) -> QKVCache:
"""Returns a dictionary initialized as {"query": [], "key": [], "value": []}.
After calling a forward pass for pipe, queries, keys and values will be
appended in the respective list for each layer.
Returns:
Dict[str, List[torch.Tensor]]: cache dictionary containing 'query', 'key' and 'value'
"""
return self._cache
def clear_cache(self) -> None:
# TODO: check if we have to force clean GPU memory
del(self._cache)
gc.collect() # force Python to clean up unreachable objects
torch.cuda.empty_cache() # tell PyTorch to release unused GPU memory from its cache
self._cache = {"query": [], "key": [], "value": []}
for module_name in self.positions_to_cache:
module = locate_block(self.pipe, module_name)
module.attn.set_processor(FluxAttnProcessor2_0())
class TFICONAttnProcessor:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self,
external_cache: QKVCache,
inject_kv: Literal["image", "text", "both"]= None,
inject_kv_foreground: bool = False,
text_seq_length: int = 512,
q_mask: Optional[torch.Tensor] = None,
call_max_times = None,
inject_q = True,
inject_k = True,
inject_v = True,
):
"""Constructor for Cached attention processor.
Args:
external_cache (QKVCache): cache to store/inject values.
inject_kv (Literal["image", "text", "both"], optional): whether to inject image, text or both streams KV.
If None, it does not perform injection but the full cache is stored. Defaults to None.
"""
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.cache = external_cache
self.inject_kv = inject_kv
self.inject_kv_foreground = inject_kv_foreground
self.text_seq_length = text_seq_length
self.q_mask = q_mask
self.inject_q = inject_q
self.inject_k = inject_k
self.inject_v = inject_v
self.call_max_times = call_max_times
if self.call_max_times is not None:
self.num_calls = call_max_times
else:
self.num_calls = None
assert all((cache_key in external_cache) for cache_key in {"query", "key", "value"}), "Cache has to contain 'query', 'key' and 'value' keys."
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# hidden states are the image patches (B, 4096, hidden_dim)
# encoder_hidden_states are the text tokens (B, 512, hidden_dim)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# concat inputs for attention -> (B, num_heads, 512 + 4096, head_dim)
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
# TODO: try first witout mask
# Cache Q, K, V
# extend the mask to match key and values dimension:
# Shape of mask is: (num_image_tokens, 1)
mask = self.q_mask.permute(1, 0).unsqueeze(0).unsqueeze(-1) # Shape: (1, num_image_tokens, 1, 1)
# put mask on gpu
mask = mask.to(key.device)
# first check that we inject only kv in images:
if self.inject_kv is not None and self.inject_kv != "image":
raise NotImplementedError("Injecting is implemented only for images.")
# the second element of the batch is the number of heads
# The first element of the batch represents the background image, the second element of the batch
# represents the foreground image. The third element represents the image where we want to inject
# the key and value of the background image and foreground image according to the query mask.
# Inject from background (element 0) where mask is True
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# Get the index range after the text tokens
start_idx = self.text_seq_length
# Batch is formed as follow:
# - background image (0)
# - foreground image (1)
# - composition(s) (2, 3, ...)
# Create the combined attention mask, by forming Q_comp and K_comp, taking the Q and K of the background image
# when outside of the mask, the one of the foreground image when inside the mask
if self.num_calls is None or self.num_calls > 0:
if self.inject_kv_foreground:
if self.inject_k:
key[2:, :, start_idx:] = torch.where(mask, key[1:2, :, start_idx:], key[0:1, :, start_idx:])
if self.inject_q:
query[2:, :, start_idx:] = torch.where(mask, query[1:2, :, start_idx:], query[0:1, :, start_idx:])
if self.inject_v:
value[2:, :, start_idx:] = torch.where(mask, value[1:2, :, start_idx:], value[0:1, :, start_idx:])
else:
if self.inject_k:
key[2:, :, start_idx:] = torch.where(mask, key[2:, :, start_idx:], key[0:1, :, start_idx:])
if self.inject_q:
query[2:, :, start_idx:] = torch.where(mask, query[2:, :, start_idx:], query[0:1, :, start_idx:])
if self.inject_v:
value[2:, :, start_idx:] = torch.where(mask, value[2:, :, start_idx:], value[0:1, :, start_idx:])
if self.num_calls is not None:
self.num_calls -= 1
# Use the combined attention map to compute attention using V from the composition image
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# hidden_states[2:, :, start_idx:] = torch.where(mask, weightage * hidden_states[1:2, :, start_idx:] + (1-weightage) * hidden_states[2:, :, start_idx:], hidden_states[2:, :, start_idx:])
# concatenate the text
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states |