File size: 23,026 Bytes
215c4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
from typing import Optional, Tuple
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from cache_and_edit import CachedPipeline
import numpy as np
from IPython.display import display
from cache_and_edit.flux_pipeline import EditedFluxPipeline
def image2latent(pipe, image, latent_nudging_scalar = 1.15):
image = pipe.image_processor.preprocess(image).type(pipe.vae.dtype).to("cuda")
latents = pipe.vae.encode(image)["latent_dist"].mean
latents = (latents - pipe.vae.config.shift_factor) * pipe.vae.config.scaling_factor
latents = latents * latent_nudging_scalar
latents = pipe._pack_latents(
latents=latents,
batch_size=1,
num_channels_latents=16,
height=image.size(2) // 8,
width= image.size(3) // 8
)
return latents
def get_inverted_input_noise(pipe: CachedPipeline,
image,
prompt: str = "",
num_steps: int = 28,
latent_nudging_scalar: int = 1.15):
"""_summary_
Args:
pipe (CachedPipeline): _description_
image (_type_): _description_
num_steps (int, optional): _description_. Defaults to 28.
Returns:
_type_: _description_
"""
width, height = image.size
inverted_latents_list = []
if isinstance(pipe.pipe, EditedFluxPipeline):
_ = pipe.run(
prompt,
num_inference_steps=num_steps,
seed=42,
guidance_scale=1,
output_type="latent",
latents=image2latent(pipe.pipe, image, latent_nudging_scalar=latent_nudging_scalar),
empty_clip_embeddings=False,
inverse=True,
width=width,
height=height,
is_inverted_generation=True,
inverted_latents_list=inverted_latents_list
).images[0]
return inverted_latents_list
else:
noise = pipe.run(
prompt,
num_inference_steps=num_steps,
seed=42,
guidance_scale=1,
output_type="latent",
latents=image2latent(pipe.pipe, image, latent_nudging_scalar=latent_nudging_scalar),
empty_clip_embeddings=False,
inverse=True,
width=width,
height=height
).images[0]
return noise
def resize_bounding_box(
bb_mask: torch.Tensor,
target_size: Tuple[int, int] = (64, 64),
) -> torch.Tensor:
"""
Given a bounding box mask, patches it into a mask with the target size.
The mask is a 2D tensor of shape (H, W) where each element is either 0 or 1.
Any patch that contains at least one 1 in the original mask will be set to 1 in the output mask.
Args:
bb_mask (torch.Tensor): The bounding box mask as a boolean tensor of shape (H, W).
target_size (Tuple[int, int]): The size of the target mask as a tuple (H, W).
Returns:
torch.Tensor: The resized bounding box mask as a boolean tensor of shape (H, W).
"""
w_mask, h_mask = bb_mask.shape[-2:]
w_target, h_target = target_size
# Make sure the sizes are compatible
if w_mask % w_target != 0 or h_mask % h_target != 0:
raise ValueError(
f"Mask size {bb_mask.shape[-2:]} is not compatible with target size {target_size}"
)
# Compute the size of a patch
patch_size = (w_mask // w_target, h_mask // h_target)
# Iterate over the mask, one patch at a time, and save a 0 patch if the patch is empty or a 1 patch if the patch is not empty
out_mask = torch.zeros((w_target, h_target), dtype=bb_mask.dtype, device=bb_mask.device)
for i in range(w_target):
for j in range(h_target):
patch = bb_mask[
i * patch_size[0] : (i + 1) * patch_size[0],
j * patch_size[1] : (j + 1) * patch_size[1],
]
if torch.sum(patch) > 0:
out_mask[i, j] = 1
else:
out_mask[i, j] = 0
return out_mask
def place_image_in_bounding_box(
image_tensor_whc: torch.Tensor,
mask_tensor_wh: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Resizes an input image to fit within a bounding box (from a mask)
preserving aspect ratio, and places it centered on a new canvas.
Args:
image_tensor_whc: Input image tensor, shape [width, height, channels].
mask_tensor_wh: Bounding box mask, shape [width, height]. Defines canvas size
and contains a rectangle of 1s for the BB.
Returns:
A tuple:
- output_image_whc (torch.Tensor): Canvas with the resized image placed.
Shape [canvas_width, canvas_height, channels].
- new_mask_wh (torch.Tensor): Mask showing the actual placement of the image.
Shape [canvas_width, canvas_height].
"""
# Validate input image dimensions
if not (image_tensor_whc.ndim == 3 and image_tensor_whc.shape[0] > 0 and image_tensor_whc.shape[1] > 0):
raise ValueError(
"Input image_tensor_whc must be a 3D tensor [width, height, channels] "
"with width > 0 and height > 0."
)
img_orig_w, img_orig_h, num_channels = image_tensor_whc.shape
# Validate mask tensor dimensions
if not (mask_tensor_wh.ndim == 2):
raise ValueError("Input mask_tensor_wh must be a 2D tensor [width, height].")
canvas_w, canvas_h = mask_tensor_wh.shape
# Prepare default empty outputs for early exit scenarios
empty_output_image = torch.zeros(
canvas_w, canvas_h, num_channels,
dtype=image_tensor_whc.dtype, device=image_tensor_whc.device
)
empty_new_mask = torch.zeros(
canvas_w, canvas_h,
dtype=mask_tensor_wh.dtype, device=mask_tensor_wh.device
)
# 1. Find Bounding Box (BB) coordinates from the input mask_tensor_wh
# fg_coords shape: [N, 2], where N is num_nonzero. Each row: [x_coord, y_coord].
fg_coords = torch.nonzero(mask_tensor_wh, as_tuple=False)
if fg_coords.numel() == 0: # No bounding box found in mask
return empty_output_image, empty_new_mask
# Determine min/max extents of the bounding box
x_min_bb, y_min_bb = fg_coords[:, 0].min(), fg_coords[:, 1].min()
x_max_bb, y_max_bb = fg_coords[:, 0].max(), fg_coords[:, 1].max()
bb_target_w = x_max_bb - x_min_bb + 1
bb_target_h = y_max_bb - y_min_bb + 1
if bb_target_w <= 0 or bb_target_h <= 0: # Should not happen if fg_coords not empty
return empty_output_image, empty_new_mask
# 2. Prepare image for resizing: TF.resize expects [C, H, W]
# Input image_tensor_whc is [W, H, C]. Permute to [C, H_orig, W_orig].
image_tensor_chw = image_tensor_whc.permute(2, 1, 0)
# 3. Calculate new dimensions for the image to fit in BB, preserving aspect ratio
scale_factor_w = bb_target_w / img_orig_w
scale_factor_h = bb_target_h / img_orig_h
scale = min(scale_factor_w, scale_factor_h) # Fit entirely within BB
resized_img_w = int(img_orig_w * scale)
resized_img_h = int(img_orig_h * scale)
if resized_img_w == 0 or resized_img_h == 0: # Image scaled to nothing
return empty_output_image, empty_new_mask
# 4. Resize the image. TF.resize expects size as [H, W].
try:
# antialias=True for better quality (requires torchvision >= 0.8.0 approx)
resized_image_chw = TF.resize(image_tensor_chw, [resized_img_h, resized_img_w], antialias=True)
except TypeError: # Fallback for older torchvision versions
resized_image_chw = TF.resize(image_tensor_chw, [resized_img_h, resized_img_w])
# Permute resized image back to [W, H, C] format
resized_image_whc = resized_image_chw.permute(2, 1, 0)
# 5. Create the output canvas image (initialized to zeros)
output_image_whc = torch.zeros(
canvas_w, canvas_h, num_channels,
dtype=image_tensor_whc.dtype, device=image_tensor_whc.device
)
# 6. Calculate pasting coordinates to center the resized image within the original BB
offset_x = (bb_target_w - resized_img_w) // 2
offset_y = (bb_target_h - resized_img_h) // 2
paste_x_start = x_min_bb + offset_x
paste_y_start = y_min_bb + offset_y
paste_x_end = paste_x_start + resized_img_w
paste_y_end = paste_y_start + resized_img_h
# Place the resized image onto the canvas
output_image_whc[paste_x_start:paste_x_end, paste_y_start:paste_y_end, :] = resized_image_whc
# 7. Create the new mask representing where the image was actually placed
new_mask_wh = torch.zeros(
canvas_w, canvas_h,
dtype=mask_tensor_wh.dtype, device=mask_tensor_wh.device
)
new_mask_wh[paste_x_start:paste_x_end, paste_y_start:paste_y_end] = 1
return output_image_whc, new_mask_wh
### Function to cut image and put it in bounding box (either cut or not cut)
def compose_noise_masks(cached_pipe,
foreground_image: Image,
background_image: Image,
target_mask: torch.Tensor,
foreground_mask: torch.Tensor,
option: str = "bg", # bg, bg_fg, segmentation1, tf_icon
photoshop_fg_noise: bool = False,
num_inversion_steps: int = 100,
):
"""
Composes noise masks for image generation using different strategies.
This function composes noise masks for stable diffusion inversion, with several composition strategies:
- "bg": Uses only background noise
- "bg_fg": Combines background and foreground noise using a target mask
- "segmentation1": Uses segmentation mask to compose foreground and background noise
- "segmentation2": Implements advanced composition with additional boundary noise
Parameters:
----------
cached_pipe : object
The cached stable diffusion pipeline used for noise inversion
foreground_image : PIL.Image
The foreground image to be placed in the background
background_image : PIL.Image
The background image
target_mask : torch.Tensor
Target mask indicating the position where the foreground should be placed
foreground_mask : torch.Tensor
Segmentation mask of the foreground object
option : str, default="bg"
Composition strategy: "bg", "bg_fg", "segmentation1", or "segmentation2"
photoshop_fg_noise : bool, default=False
Whether to generate noise from a photoshopped composition of foreground and background
num_inversion_steps : int, default=100
Number of steps for the inversion process
Returns:
-------
dict
A dictionary containing:
- "noise": Dictionary of generated noises (composed_noise, foreground_noise, background_noise)
- "latent_masks": Dictionary of latent masks used for composition
"""
# assert options
assert option in ["bg", "bg_fg", "segmentation1", "segmentation2"], f"Invalid option: {option}"
# calculate size of latent noise for mask resizing
PATCH_SIZE = 16
latent_size = background_image.size[0] // PATCH_SIZE
latents = (latent_size, latent_size)
# process the options
if option == "bg":
# only background noise
bg_noise = get_inverted_input_noise(cached_pipe, background_image, num_steps=num_inversion_steps)
composed_noise = bg_noise
all_noise = {
"composed_noise": composed_noise,
"background_noise": bg_noise,
}
all_latent_masks = {}
elif option == "bg_fg":
# resize and scale the image to the bounding box
reframed_fg_img, resized_mask = place_image_in_bounding_box(
torch.from_numpy(np.array(foreground_image)),
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
#print("Placed Foreground Image")
reframed_fg_img = Image.fromarray(reframed_fg_img.numpy())
#display(reframed_fg_img)
#print("Placed Mask")
resized_mask_img = Image.fromarray((resized_mask.numpy() * 255).astype(np.uint8))
#display(resized_mask_img)
# invert resized & padded image
if photoshop_fg_noise:
#print("Photoshopping FG IMAGE")
photoshop_img = Image.fromarray(
(torch.tensor(np.array(background_image)) * ~resized_mask.cpu().unsqueeze(-1) + torch.tensor(np.array(reframed_fg_img)) * resized_mask.cpu().unsqueeze(-1)).numpy()
)
#display(photoshop_img)
fg_noise = get_inverted_input_noise(cached_pipe, photoshop_img, num_steps=num_inversion_steps)
else:
fg_noise = get_inverted_input_noise(cached_pipe, reframed_fg_img, num_steps=num_inversion_steps)
bg_noise = get_inverted_input_noise(cached_pipe, background_image, num_steps=num_inversion_steps)
# overwrite get masked in latent space
latent_mask = resize_bounding_box(
resized_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
# compose the noise
composed_noise = bg_noise * (~latent_mask) + fg_noise * latent_mask
all_latent_masks = {
"latent_mask": latent_mask,
}
all_noise = {
"composed_noise": composed_noise,
"foreground_noise": fg_noise,
"background_noise": bg_noise,
}
elif option == "segmentation1":
# cut out the object and compose it with the background noise
# segmented foreground image
segmented_fg_image = torch.tensor(
np.array(
foreground_mask.resize(foreground_image.size)
)).to(torch.bool).unsqueeze(-1) * torch.tensor(
np.array(foreground_image)
)
# resize and scale the image to the bounding box
reframed_fg_img, resized_mask = place_image_in_bounding_box(
segmented_fg_image,
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
reframed_fg_img = Image.fromarray(reframed_fg_img.numpy())
#display(reframed_fg_img)
resized_mask_img = Image.fromarray((resized_mask.numpy() * 255).astype(np.uint8))
# resize and scale the mask itself
foreground_mask = foreground_mask.convert("RGB") # to avoid extraction of contours and make work with function
reframed_segmentation_mask, resized_mask = place_image_in_bounding_box(
torch.from_numpy(np.array(foreground_mask)),
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
reframed_segmentation_mask = reframed_segmentation_mask.numpy()
reframed_segmentation_mask_img = Image.fromarray(reframed_segmentation_mask)
#print("Placed Segmentation Mask")
#display(reframed_segmentation_mask_img)
# invert resized & padded image
# fg_noise = get_inverted_input_noise(cached_pipe, reframed_fg_img, num_steps=num_inversion_steps)
if photoshop_fg_noise:
# temporarily convert to apply mask
#print("Photoshopping FG IMAGE")
seg_mask_temp = torch.from_numpy(reframed_segmentation_mask).bool()
bg_temp = torch.tensor(np.array(background_image))
fg_temp = torch.tensor(np.array(reframed_fg_img))
photoshop_img = Image.fromarray(
(bg_temp * (~seg_mask_temp) + fg_temp * seg_mask_temp).numpy()
).convert("RGB")
#display(photoshop_img)
fg_noise = get_inverted_input_noise(cached_pipe, photoshop_img, num_steps=num_inversion_steps)
else:
fg_noise = get_inverted_input_noise(cached_pipe, reframed_fg_img, num_steps=num_inversion_steps)
bg_noise = get_inverted_input_noise(cached_pipe, background_image, num_steps=num_inversion_steps)
bg_noise_init = bg_noise[-1].squeeze(0) if isinstance(bg_noise, list) else bg_noise
fg_noise_init = fg_noise[-1].squeeze(0) if isinstance(fg_noise, list) else fg_noise
# overwrite background in resized mask
# convert mask from 512x512x3 to 512x512 first
reframed_segmentation_mask = reframed_segmentation_mask[:, :, 0]
reframed_segmentation_mask = torch.from_numpy(reframed_segmentation_mask).to(dtype=bool)
latent_mask = resize_bounding_box(
reframed_segmentation_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
bb_mask = resize_bounding_box(
resized_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
# compose noise
composed_noise = bg_noise_init * (~latent_mask) + fg_noise_init * latent_mask
all_latent_masks = {
"latent_segmentation_mask": latent_mask,
# FIXME: handle bounding box better (making sure shapes are correct, especially when bg and fg images have different sizes, e.g. test image 69)
"bb_mask": bb_mask,
}
all_noise = {
"composed_noise": composed_noise,
"foreground_noise": fg_noise_init,
"background_noise": bg_noise_init,
"foreground_noise_list": fg_noise if isinstance(fg_noise, list) else None,
"background_noise_list": bg_noise if isinstance(bg_noise, list) else None,
}
elif option == "segmentation2":
# add random noise in the background
# segmented foreground image
segmented_fg_image = torch.tensor(
np.array(
foreground_mask.resize(foreground_image.size)
)).to(torch.bool).unsqueeze(-1) * torch.tensor(
np.array(foreground_image)
)
# resize and scale the image to the bounding box
reframed_fg_img, resized_mask = place_image_in_bounding_box(
segmented_fg_image,
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
#print("Segmented and Placed FG Image")
reframed_fg_img = Image.fromarray(reframed_fg_img.numpy())
#display(reframed_fg_img)
# resize and scale the mask itself
foreground_mask = foreground_mask.convert("RGB")
reframed_segmentation_mask, resized_mask = place_image_in_bounding_box(
torch.from_numpy(np.array(foreground_mask)),
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
reframed_segmentation_mask = reframed_segmentation_mask.numpy()
reframed_segmentation_mask_img = Image.fromarray(reframed_segmentation_mask)
#print("Reframed Segmentation Mask")
#display(reframed_segmentation_mask_img)
xor_mask = target_mask ^ np.array(reframed_segmentation_mask_img.convert("L"))
#print("XOR Mask")
#display(Image.fromarray(xor_mask))
# invert resized & padded image
# fg_noise = get_inverted_input_noise(cached_pipe, reframed_fg_img, num_steps=num_inversion_steps)
if photoshop_fg_noise:
#print("Photoshopping FG IMAGE")
# temporarily convert to apply mask
seg_mask_temp = torch.from_numpy(reframed_segmentation_mask).bool()
bg_temp = torch.tensor(np.array(background_image))
fg_temp = torch.tensor(np.array(reframed_fg_img))
photoshop_img = Image.fromarray(
(bg_temp * (~seg_mask_temp) + fg_temp * seg_mask_temp).numpy()
).convert("RGB")
#display(photoshop_img)
fg_noise = get_inverted_input_noise(cached_pipe, photoshop_img, num_steps=num_inversion_steps)
else:
fg_noise = get_inverted_input_noise(cached_pipe, reframed_fg_img, num_steps=num_inversion_steps)
bg_noise = get_inverted_input_noise(cached_pipe, background_image, num_steps=num_inversion_steps)
# overwrite background in resized mask
# convert mask from 512x512x3 to 512x512
reframed_segmentation_mask = reframed_segmentation_mask[:, :, 0]
reframed_segmentation_mask = torch.from_numpy(reframed_segmentation_mask).to(dtype=bool)
# get all masks in latents and move to device
latent_seg_mask = resize_bounding_box(
reframed_segmentation_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
print(latent_seg_mask.shape)
latent_xor_mask = resize_bounding_box(
torch.from_numpy(xor_mask),
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
print(resized_mask.shape)
latent_target_mask = resize_bounding_box(
resized_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
# implement x∗T = xrT ⊙Mseg +xmT ⊙(1−Muser)+z⊙(Muser ⊕Mseg)
bg_noise_init = bg_noise[-1].squeeze(0) if isinstance(bg_noise, list) else bg_noise
fg_noise_init = fg_noise[-1].squeeze(0) if isinstance(fg_noise, list) else fg_noise
bg = bg_noise_init[-1] * (~latent_target_mask)
fg = fg_noise_init[-1] * latent_seg_mask
boundary = latent_xor_mask * torch.randn(latent_xor_mask.shape).to("cuda")
composed_noise = bg + fg + boundary
all_latent_masks = {
"latent_target_mask": latent_target_mask,
"latent_segmentation_mask": latent_seg_mask,
"latent_xor_mask": latent_xor_mask,
}
all_noise = {
"composed_noise": composed_noise,
"foreground_noise": fg_noise_init,
"background_noise": bg_noise_init,
"foreground_noise_list": fg_noise if isinstance(fg_noise, list) else None,
"background_noise_list": bg_noise if isinstance(bg_noise, list) else None,
}
# always add latent bbox mask (for bg consistency or any other future application)
latent_bbox_mask = resize_bounding_box(
torch.from_numpy(np.array(target_mask.resize(background_image.size))), # reseize just to be sure
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
all_latent_masks["latent_bbox_mask"] = latent_bbox_mask
# always add latent segmentation mkas
reframed_fg_img, resized_mask = place_image_in_bounding_box(
torch.from_numpy(np.array(foreground_image)),
(torch.from_numpy(np.array(target_mask)) / 255.0).to(dtype=bool)
)
bb_mask = resize_bounding_box(
resized_mask,
target_size=latents,
).flatten().unsqueeze(-1).to("cuda")
all_latent_masks["latent_segmentation_mask"] = bb_mask
# output
return {
"noise": all_noise,
"latent_masks": all_latent_masks,
} |