Update agent.py
Browse files
agent.py
CHANGED
@@ -1,116 +1,46 @@
|
|
1 |
-
from typing import TypedDict, Annotated, Sequence
|
2 |
-
import operator
|
3 |
-
from langgraph.graph import StateGraph, END
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
-
from ai_tools import Calculator, DocRetriever, WebSearcher
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
<|assistant|>
|
40 |
-
"""
|
41 |
-
|
42 |
-
# Initialize graph
|
43 |
-
graph = StateGraph(AgentState)
|
44 |
-
|
45 |
-
# Node: Generate tool calls
|
46 |
-
def agent_node(state):
|
47 |
-
tool_list = "\n".join([f"- {t.name}: {t.description}" for t in tools])
|
48 |
-
prompt = TOOL_PROMPT.format(
|
49 |
-
tool_descriptions=tool_list,
|
50 |
-
input=state["input"],
|
51 |
-
context=state["context"]
|
52 |
-
)
|
53 |
-
|
54 |
-
response = llm_pipeline(
|
55 |
-
prompt,
|
56 |
-
max_new_tokens=150,
|
57 |
-
do_sample=True,
|
58 |
-
temperature=0.2,
|
59 |
-
pad_token_id=tokenizer.eos_token_id
|
60 |
-
)[0]['generated_text']
|
61 |
-
|
62 |
-
# Extract tool call
|
63 |
-
action_match = re.search(r"Action: (\w+)", response)
|
64 |
-
action_input_match = re.search(r"Action Input: (.+?)\n", response)
|
65 |
-
|
66 |
-
if action_match and action_input_match:
|
67 |
-
tool_name = action_match.group(1)
|
68 |
-
tool_input = action_input_match.group(1).strip()
|
69 |
-
return {
|
70 |
-
"last_tool": tool_name,
|
71 |
-
"tool_input": tool_input,
|
72 |
-
"thought": response
|
73 |
-
}
|
74 |
-
else:
|
75 |
-
return {"last_tool": "FINISH", "output": response}
|
76 |
-
|
77 |
-
# Node: Execute tools
|
78 |
-
def tool_node(state):
|
79 |
-
tool = tool_map.get(state["last_tool"])
|
80 |
-
if not tool:
|
81 |
-
return {"context": f"Error: Unknown tool {state['last_tool']}"}
|
82 |
-
|
83 |
-
result = tool.run(state["tool_input"])
|
84 |
-
return {"context": f"Tool {tool.name} returned: {result}"}
|
85 |
-
|
86 |
-
# Define graph structure
|
87 |
-
graph.add_node("agent", agent_node)
|
88 |
-
graph.add_node("tool", tool_node)
|
89 |
-
graph.set_entry_point("agent")
|
90 |
-
|
91 |
-
# Conditional edges
|
92 |
-
def route_action(state):
|
93 |
-
if state["last_tool"] == "FINISH":
|
94 |
-
return END
|
95 |
-
return "tool"
|
96 |
-
|
97 |
-
graph.add_edge("agent", "tool")
|
98 |
-
graph.add_conditional_edges("tool", route_action, {"agent": "agent", END: END})
|
99 |
-
graph.add_edge("tool", "agent") # Loop back after tool use
|
100 |
-
|
101 |
-
# Compile the agent
|
102 |
-
agent = graph.compile()
|
103 |
-
|
104 |
-
# Interface function
|
105 |
-
def run_agent(query: str, document: str = ""):
|
106 |
-
doc_retriever.document = document # Load document
|
107 |
-
state = {"input": query, "context": [], "last_tool": ""}
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
if node == "tool":
|
114 |
-
print(f"TOOL RESULT: {value['context']}")
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
2 |
+
from .ai_tools import Calculator, DocRetriever, WebSearcher
|
3 |
+
from .graph import GaiaGraph
|
4 |
+
|
5 |
+
class GaiaAgent:
|
6 |
+
def __init__(self, model_name="HuggingFaceH4/zephyr-7b-beta"):
|
7 |
+
self.model_name = model_name
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
self.llm_pipeline = pipeline(
|
11 |
+
"text-generation",
|
12 |
+
model=self.model,
|
13 |
+
tokenizer=self.tokenizer
|
14 |
+
)
|
15 |
+
|
16 |
+
# Initialize tools
|
17 |
+
self.calculator = Calculator()
|
18 |
+
self.doc_retriever = DocRetriever()
|
19 |
+
self.web_searcher = WebSearcher()
|
20 |
+
|
21 |
+
# Create tool list
|
22 |
+
self.tools = [
|
23 |
+
self.calculator,
|
24 |
+
self.web_searcher,
|
25 |
+
self.doc_retriever
|
26 |
+
]
|
27 |
+
|
28 |
+
# Build LangGraph workflow
|
29 |
+
self.graph = GaiaGraph(
|
30 |
+
model=self.llm_pipeline,
|
31 |
+
tokenizer=self.tokenizer,
|
32 |
+
tools=self.tools
|
33 |
+
)
|
34 |
+
|
35 |
+
print(f"GaiaAgent initialized with model: {model_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def load_document(self, document_text: str):
|
38 |
+
"""Load document content for retrieval"""
|
39 |
+
self.doc_retriever.load_document(document_text)
|
40 |
+
print(f"Document loaded ({len(document_text)} characters)")
|
|
|
|
|
41 |
|
42 |
+
def __call__(self, question: str) -> str:
|
43 |
+
print(f"Agent received question: {question[:50]}{'...' if len(question) > 50 else ''}")
|
44 |
+
result = self.graph.run(question)
|
45 |
+
print(f"Agent returning answer: {result[:50]}{'...' if len(result) > 50 else ''}")
|
46 |
+
return result
|