superone001's picture
Create graph.py
d58ea8f verified
from typing import TypedDict, Annotated, Sequence
import operator
import re
from langgraph.graph import StateGraph, END
from .ai_tools import Calculator, DocRetriever, WebSearcher
class AgentState(TypedDict):
input: str
context: Annotated[Sequence[str], operator.add]
last_tool: str
output: str
class GaiaGraph:
def __init__(self, model, tokenizer, tools):
self.model = model
self.tokenizer = tokenizer
self.tools = tools
self.tool_map = {tool.name: tool for tool in tools}
self.graph = self._build_graph()
def _build_graph(self):
graph = StateGraph(AgentState)
graph.add_node("agent", self._agent_node)
graph.add_node("tool", self._tool_node)
graph.set_entry_point("agent")
graph.add_edge("agent", "tool")
graph.add_conditional_edges(
"tool",
self._route_action,
{"continue": "agent", "end": END}
)
return graph.compile()
def _agent_node(self, state: AgentState) -> dict:
tool_list = "\n".join([f"- {t.name}: {t.description}" for t in self.tools])
prompt = f"""<|system|>
You're an expert problem solver. Use these tools when needed:
{tool_list}
Respond ONLY in this format:
Thought: <your reasoning>
Action: <tool_name or 'FINISH'>
Action Input: <input for tool>
</s>
<|user|>
{state['input']}
Context: {state['context']}
</s>
<|assistant|>
"""
response = self.model(
prompt,
max_new_tokens=200,
do_sample=True,
temperature=0.2,
pad_token_id=self.tokenizer.eos_token_id
)[0]['generated_text']
# Extract tool call
action_match = re.search(r"Action: (\w+)", response)
action_input_match = re.search(r"Action Input: (.+?)\n", response, re.DOTALL)
if action_match and action_input_match:
tool_name = action_match.group(1)
tool_input = action_input_match.group(1).strip()
return {
"last_tool": tool_name,
"tool_input": tool_input,
"thought": response
}
else:
return {"last_tool": "FINISH", "output": response}
def _tool_node(self, state: AgentState) -> dict:
if state["last_tool"] == "FINISH":
return {"output": state.get("output", "No output generated")}
tool = self.tool_map.get(state["last_tool"])
if not tool:
return {"context": f"Error: Unknown tool {state['last_tool']}"}
result = tool.run(state["tool_input"])
return {"context": f"Tool {tool.name} returned: {result}"}
def _route_action(self, state: AgentState) -> str:
return "end" if state["last_tool"] == "FINISH" else "continue"
def run(self, input: str) -> str:
state = {"input": input, "context": [], "last_tool": "", "output": ""}
for step in self.graph.stream(state):
for node, value in step.items():
if node == "__end__":
return value["output"]
return "Execution completed without output"