|
""" |
|
LangGraph Agent - 多工具智能代理系统 |
|
结合数学计算、网络搜索、学术检索和向量数据库增强能力 |
|
支持多种AI模型提供商(Google Gemini, Groq, HuggingFace) |
|
""" |
|
|
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""乘法运算: 返回两个整数的乘积""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""加法运算: 返回两个整数的和""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""减法运算: 返回两个整数的差""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""除法运算: 返回两个整数的商""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""取模运算: 返回两个整数的模""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""维基百科搜索: 返回最多1个相关结果""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=1).load() |
|
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""网络搜索(Tavily): 返回最多1个相关结果""" |
|
search_docs = TavilySearchResults(max_results=1).invoke(query=query) |
|
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""学术论文搜索(Arxiv): 返回最多1个相关结果""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=1).load() |
|
|
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
|
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain", |
|
) |
|
retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="从向量数据库中检索相似问题", |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
retriever_tool, |
|
] |
|
|
|
|
|
|
|
|
|
|
|
def build_graph(provider: str = "groq"): |
|
""" |
|
构建LangGraph工作流 |
|
|
|
参数: |
|
provider: AI模型提供商 ("google", "groq", "huggingface") |
|
|
|
返回: |
|
编译好的LangGraph对象 |
|
""" |
|
|
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("无效的提供商。请选择 'google', 'groq' 或 'huggingface'") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
|
|
def retriever_node(state: MessagesState): |
|
"""检索节点:从向量数据库查找相似问题""" |
|
|
|
user_query = state["messages"][-1].content |
|
|
|
|
|
similar_question = vector_store.similarity_search(user_query) |
|
|
|
|
|
reference_msg = HumanMessage( |
|
content=f"参考类似问题及解答:\n\n{similar_question[0].page_content}", |
|
) |
|
|
|
|
|
return {"messages": [sys_msg] + state["messages"] + [reference_msg]} |
|
|
|
def assistant_node(state: MessagesState): |
|
"""AI节点:处理消息并决定下一步动作""" |
|
|
|
response = llm_with_tools.invoke(state["messages"]) |
|
return {"messages": [response]} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
|
|
|
builder.add_node("retriever", retriever_node) |
|
builder.add_node("assistant", assistant_node) |
|
builder.add_node("tools", ToolNode(tools)) |
|
|
|
|
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
|
|
|
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
|
|
|
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
question = "托马斯·阿奎纳斯的图片是什么时候首次添加到双重效应原则的维基百科页面的?" |
|
|
|
|
|
agent_graph = build_graph(provider="groq") |
|
|
|
|
|
messages = [HumanMessage(content=question)] |
|
|
|
|
|
result = agent_graph.invoke({"messages": messages}) |
|
|
|
|
|
print("\n===== 完整对话记录 =====") |
|
for msg in result["messages"]: |
|
print(f"[{msg.type}]: {msg.content[:200]}...") |
|
|
|
|
|
final_answer = result["messages"][-1].content |
|
print("\n===== 最终回答 =====") |
|
print(final_answer) |