import streamlit as st import tensorflow as tf import numpy as np import nltk import os from nltk.tokenize import sent_tokenize from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification # 📁 Hugging Face cache dir os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" # 📥 Download NLTK punkt tokenizer nltk_data_path = "/tmp/nltk_data" nltk.download("punkt_tab", download_dir=nltk_data_path) nltk.data.path.append(nltk_data_path) # ✅ Cache the model/tokenizer @st.cache_resource def load_model_and_tokenizer(): tokenizer = DistilBertTokenizerFast.from_pretrained( "distilbert-base-uncased", cache_dir="/tmp/huggingface" ) model = TFDistilBertForSequenceClassification.from_pretrained( "sundaram07/distilbert-sentence-classifier", cache_dir="/tmp/huggingface" ) return tokenizer, model tokenizer, model = load_model_and_tokenizer() # 🔮 Predict sentence AI probability def predict_sentence_ai_probability(sentence): inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True) outputs = model(inputs) logits = outputs.logits prob_ai = tf.sigmoid(logits)[0][0].numpy() return prob_ai # 📊 Analyze text def predict_ai_generated_percentage(text, threshold=0.15): text = text.strip() sentences = sent_tokenize(text) if len(sentences) == 0: return 0.0, [] ai_sentence_count = 0 results = [] for sentence in sentences: prob = predict_sentence_ai_probability(sentence) is_ai = prob <= threshold results.append((sentence, prob, is_ai)) if is_ai: ai_sentence_count += 1 ai_percentage = (ai_sentence_count / len(sentences)) * 100 return ai_percentage, results # 🖥️ Streamlit UI st.set_page_config(page_title="AI Detector", layout="wide") st.title("🧠 AI Content Detector") st.markdown("This app detects the percentage of **AI-generated content** using sentence-level analysis with DistilBERT.") # 📋 Text input user_input = st.text_area("📋 Paste your text below to check for AI-generated sentences:", height=300) # 📤 Output placeholder (to clear previous results) output_container = st.empty() # 🔍 Analyze button logic if st.button("🔍 Analyze"): if not user_input.strip(): st.warning("⚠️ Please enter some text.") else: ai_percentage, analysis_results = predict_ai_generated_percentage(user_input) if len(analysis_results) == 0: st.warning("⚠️ Not enough valid sentences to analyze.") else: with output_container.container(): st.subheader("🔍 Sentence-level Analysis") for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1): label = "🟢 Human" if not is_ai else "🔴 AI" st.markdown(f"**{i}.** _{sentence}_\n\n → {label}") st.subheader("📊 Final Result") st.success(f"Estimated **AI-generated content**: **{ai_percentage:.2f}%**")