import streamlit as st import tensorflow as tf import numpy as np import re import nltk # Ensure NLTK sentence tokenizer is available nltk.download('punkt') from nltk.tokenize import sent_tokenize model = tf.keras.models.load_model('my_distilbert_classifier.keras') def predict_sentence_ai_probability(sentence): preds = model.predict([sentence]) prob_ai = tf.sigmoid(preds[0][0]).numpy() return prob_ai def predict_ai_generated_percentage(text, threshold=0.75): text=text+"." sentences = sent_tokenize(text) ai_sentence_count = 0 results = [] for sentence in sentences: prob = predict_sentence_ai_probability(sentence) is_ai = prob >= threshold results.append((sentence, prob, is_ai)) if is_ai: ai_sentence_count += 1 total_sentences = len(sentences) ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0 return ai_percentage, results st.title("🧠 AI Content Detector") st.markdown("This tool detects the percentage of **AI-generated content** in your input text based on sentence-level analysis.") user_input = st.text_area("Paste your text here:", height=300) if st.button("Analyze"): if user_input.strip() == "": st.warning("Please enter some text to analyze.") else: ai_percentage, analysis_results = predict_ai_generated_percentage(user_input) st.subheader("šŸ” Sentence-level Analysis") for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1): label = "🟢 Human" if not is_ai else "šŸ”“ AI" st.markdown(f"**{i}.** _{sentence}_\n\n→ **Probability AI:** `{prob:.2%}` → {label}") st.subheader("šŸ“Š Final Result") st.success(f"Estimated **AI-generated content**: **{ai_percentage:.2f}%**")