Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +21 -21
src/streamlit_app.py
CHANGED
@@ -6,15 +6,15 @@ import os
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification
|
8 |
|
9 |
-
# ๐
|
10 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
11 |
|
12 |
-
# ๐ฅ Download NLTK tokenizer
|
13 |
nltk_data_path = "/tmp/nltk_data"
|
14 |
-
nltk.download("
|
15 |
nltk.data.path.append(nltk_data_path)
|
16 |
|
17 |
-
#
|
18 |
@st.cache_resource
|
19 |
def load_model_and_tokenizer():
|
20 |
tokenizer = DistilBertTokenizerFast.from_pretrained(
|
@@ -27,7 +27,7 @@ def load_model_and_tokenizer():
|
|
27 |
|
28 |
tokenizer, model = load_model_and_tokenizer()
|
29 |
|
30 |
-
# ๐ฎ Predict AI probability
|
31 |
def predict_sentence_ai_probability(sentence):
|
32 |
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True)
|
33 |
outputs = model(inputs)
|
@@ -39,6 +39,9 @@ def predict_sentence_ai_probability(sentence):
|
|
39 |
def predict_ai_generated_percentage(text, threshold=0.15):
|
40 |
text = text.strip()
|
41 |
sentences = sent_tokenize(text)
|
|
|
|
|
|
|
42 |
ai_sentence_count = 0
|
43 |
results = []
|
44 |
|
@@ -49,11 +52,10 @@ def predict_ai_generated_percentage(text, threshold=0.15):
|
|
49 |
if is_ai:
|
50 |
ai_sentence_count += 1
|
51 |
|
52 |
-
|
53 |
-
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0
|
54 |
return ai_percentage, results
|
55 |
|
56 |
-
# ๐ฅ๏ธ Streamlit UI
|
57 |
st.set_page_config(page_title="AI Detector", layout="wide")
|
58 |
st.title("๐ง AI Content Detector")
|
59 |
st.markdown("This app detects the percentage of **AI-generated content** using sentence-level analysis with DistilBERT.")
|
@@ -61,15 +63,9 @@ st.markdown("This app detects the percentage of **AI-generated content** using s
|
|
61 |
# ๐ Text input
|
62 |
user_input = st.text_area("๐ Paste your text below to check for AI-generated sentences:", height=300)
|
63 |
|
64 |
-
# โ
Initialize session state
|
65 |
-
if "analysis_done" not in st.session_state:
|
66 |
-
st.session_state.analysis_done = False
|
67 |
-
st.session_state.analysis_results = None
|
68 |
-
st.session_state.ai_percentage = None
|
69 |
-
|
70 |
# ๐ Analyze button logic
|
71 |
if st.button("๐ Analyze"):
|
72 |
-
#
|
73 |
st.session_state.analysis_done = False
|
74 |
st.session_state.analysis_results = None
|
75 |
st.session_state.ai_percentage = None
|
@@ -77,14 +73,18 @@ if st.button("๐ Analyze"):
|
|
77 |
if not user_input.strip():
|
78 |
st.warning("โ ๏ธ Please enter some text.")
|
79 |
else:
|
80 |
-
#
|
81 |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
|
82 |
-
st.session_state.analysis_done = True
|
83 |
-
st.session_state.analysis_results = analysis_results
|
84 |
-
st.session_state.ai_percentage = ai_percentage
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
st.subheader("๐ Sentence-level Analysis")
|
89 |
for i, (sentence, prob, is_ai) in enumerate(st.session_state.analysis_results, start=1):
|
90 |
label = "๐ข Human" if not is_ai else "๐ด AI"
|
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification
|
8 |
|
9 |
+
# ๐ Hugging Face cache dir
|
10 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
11 |
|
12 |
+
# ๐ฅ Download NLTK punkt tokenizer
|
13 |
nltk_data_path = "/tmp/nltk_data"
|
14 |
+
nltk.download("punkt", download_dir=nltk_data_path)
|
15 |
nltk.data.path.append(nltk_data_path)
|
16 |
|
17 |
+
# โ
Cache the model/tokenizer
|
18 |
@st.cache_resource
|
19 |
def load_model_and_tokenizer():
|
20 |
tokenizer = DistilBertTokenizerFast.from_pretrained(
|
|
|
27 |
|
28 |
tokenizer, model = load_model_and_tokenizer()
|
29 |
|
30 |
+
# ๐ฎ Predict sentence AI probability
|
31 |
def predict_sentence_ai_probability(sentence):
|
32 |
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True)
|
33 |
outputs = model(inputs)
|
|
|
39 |
def predict_ai_generated_percentage(text, threshold=0.15):
|
40 |
text = text.strip()
|
41 |
sentences = sent_tokenize(text)
|
42 |
+
if len(sentences) == 0:
|
43 |
+
return 0.0, []
|
44 |
+
|
45 |
ai_sentence_count = 0
|
46 |
results = []
|
47 |
|
|
|
52 |
if is_ai:
|
53 |
ai_sentence_count += 1
|
54 |
|
55 |
+
ai_percentage = (ai_sentence_count / len(sentences)) * 100
|
|
|
56 |
return ai_percentage, results
|
57 |
|
58 |
+
# ๐ฅ๏ธ Streamlit UI
|
59 |
st.set_page_config(page_title="AI Detector", layout="wide")
|
60 |
st.title("๐ง AI Content Detector")
|
61 |
st.markdown("This app detects the percentage of **AI-generated content** using sentence-level analysis with DistilBERT.")
|
|
|
63 |
# ๐ Text input
|
64 |
user_input = st.text_area("๐ Paste your text below to check for AI-generated sentences:", height=300)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# ๐ Analyze button logic
|
67 |
if st.button("๐ Analyze"):
|
68 |
+
# Clear previous session results
|
69 |
st.session_state.analysis_done = False
|
70 |
st.session_state.analysis_results = None
|
71 |
st.session_state.ai_percentage = None
|
|
|
73 |
if not user_input.strip():
|
74 |
st.warning("โ ๏ธ Please enter some text.")
|
75 |
else:
|
76 |
+
# Perform analysis
|
77 |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input)
|
|
|
|
|
|
|
78 |
|
79 |
+
if len(analysis_results) == 0:
|
80 |
+
st.warning("โ ๏ธ Not enough valid sentences to analyze.")
|
81 |
+
else:
|
82 |
+
st.session_state.analysis_done = True
|
83 |
+
st.session_state.analysis_results = analysis_results
|
84 |
+
st.session_state.ai_percentage = ai_percentage
|
85 |
+
|
86 |
+
# ๐ค Show results
|
87 |
+
if st.session_state.get("analysis_done", False):
|
88 |
st.subheader("๐ Sentence-level Analysis")
|
89 |
for i, (sentence, prob, is_ai) in enumerate(st.session_state.analysis_results, start=1):
|
90 |
label = "๐ข Human" if not is_ai else "๐ด AI"
|