Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import nltk | |
import os | |
from nltk.tokenize import sent_tokenize | |
from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification | |
# ๐ Use safe cache directory inside Hugging Face or Docker | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface" | |
# ๐ฅ Download NLTK tokenizer | |
nltk_data_path = "/tmp/nltk_data" | |
nltk.download("punkt_tab", download_dir=nltk_data_path) | |
nltk.data.path.append(nltk_data_path) | |
# ๐ Load tokenizer and model from Hugging Face | |
tokenizer = DistilBertTokenizerFast.from_pretrained( | |
"distilbert-base-uncased", cache_dir="/tmp/huggingface" | |
) | |
model = TFDistilBertForSequenceClassification.from_pretrained( | |
"sundaram07/distilbert-sentence-classifier", cache_dir="/tmp/huggingface" | |
) | |
# ๐ฎ Predict AI probability for a sentence | |
def predict_sentence_ai_probability(sentence): | |
inputs = tokenizer(sentence, return_tensors="tf", truncation=True, padding=True) | |
outputs = model(inputs) | |
logits = outputs.logits | |
prob_ai = tf.sigmoid(logits)[0][0].numpy() | |
return prob_ai | |
# ๐ Analyze all sentences | |
def predict_ai_generated_percentage(text, threshold=0.15): | |
text = text.strip() | |
sentences = sent_tokenize(text) | |
ai_sentence_count = 0 | |
results = [] | |
for sentence in sentences: | |
prob = predict_sentence_ai_probability(sentence) | |
is_ai = prob <= threshold | |
results.append((sentence, prob, is_ai)) | |
if is_ai: | |
ai_sentence_count += 1 | |
total_sentences = len(sentences) | |
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0 | |
return ai_percentage, results | |
# ๐ Streamlit Web App | |
st.set_page_config(page_title="AI Detector", layout="wide") | |
st.title("๐ง AI Content Detector") | |
st.markdown("This app detects the percentage of **AI-generated content** based on sentence-level analysis using DistilBERT.") | |
# Initialize session state to avoid duplicates | |
if "last_input" not in st.session_state: | |
st.session_state.last_input = "" | |
st.session_state.results = None | |
st.session_state.percentage = None | |
# ๐ User Input Area | |
user_input = st.text_area("๐ Paste your text below to check for AI-generated sentences:", height=300) | |
# ๐ Analyze Button | |
if st.button("๐ Analyze"): | |
if not user_input.strip(): | |
st.warning("โ ๏ธ Please enter some text to analyze.") | |
else: | |
# Store in session_state to avoid duplicates | |
st.session_state.last_input = user_input | |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input) | |
st.session_state.results = analysis_results | |
st.session_state.percentage = ai_percentage | |
# Display only if results are present | |
if st.session_state.results is not None: | |
st.subheader("๐ Sentence-level Analysis") | |
for i, (sentence, prob, is_ai) in enumerate(st.session_state.results, start=1): | |
label = "๐ข Human" if not is_ai else "๐ด AI" | |
st.markdown(f"**{i}.** _{sentence}_\n\n โ {label}") | |
st.subheader("๐ Final Result") | |
st.success(f"Estimated **AI-generated content**: **{st.session_state.percentage:.2f}%**") | |