Spaces:
Running
Running
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import re | |
import nltk | |
import os | |
from nltk.tokenize import sent_tokenize | |
# Use local nltk_data folder (safe for Hugging Face Spaces) | |
nltk_data_path = os.path.join(os.path.dirname(__file__), "nltk_data") | |
nltk.download("punkt", download_dir=nltk_data_path) | |
nltk.data.path.append(nltk_data_path) | |
# Load model | |
model = tf.keras.models.load_model('src/my_distilbert_classifier.keras') | |
def predict_sentence_ai_probability(sentence): | |
preds = model.predict([sentence]) | |
prob_ai = tf.sigmoid(preds[0][0]).numpy() | |
return prob_ai | |
def predict_ai_generated_percentage(text, threshold=0.75): | |
text += "." | |
sentences = sent_tokenize(text) | |
ai_sentence_count = 0 | |
results = [] | |
for sentence in sentences: | |
prob = predict_sentence_ai_probability(sentence) | |
is_ai = prob >= threshold | |
results.append((sentence, prob, is_ai)) | |
if is_ai: | |
ai_sentence_count += 1 | |
total_sentences = len(sentences) | |
ai_percentage = (ai_sentence_count / total_sentences) * 100 if total_sentences > 0 else 0.0 | |
return ai_percentage, results | |
# Streamlit UI | |
st.title("π§ AI Content Detector") | |
st.markdown("This tool detects the percentage of **AI-generated content** in your input text based on sentence-level analysis.") | |
user_input = st.text_area("Paste your text here:", height=300) | |
if st.button("Analyze"): | |
if user_input.strip() == "": | |
st.warning("Please enter some text to analyze.") | |
else: | |
ai_percentage, analysis_results = predict_ai_generated_percentage(user_input) | |
st.subheader("π Sentence-level Analysis") | |
for i, (sentence, prob, is_ai) in enumerate(analysis_results, start=1): | |
label = "π’ Human" if not is_ai else "π΄ AI" | |
st.markdown(f"**{i}.** _{sentence}_\n\nβ **Probability AI:** `{prob:.2%}` β {label}") | |
st.subheader("π Final Result") | |
st.success(f"Estimated **AI-generated content**: **{ai_percentage:.2f}%**") | |