Spaces:
Sleeping
Sleeping
File size: 12,657 Bytes
8876855 83f25b8 c8fdd4d 8876855 9fe3021 8876855 9fe3021 8876855 9fe3021 8876855 e117a68 8876855 69ddba8 8876855 69ddba8 8876855 3915b0a 8876855 3915b0a 8876855 394ba43 8876855 3915b0a 8876855 3915b0a 8876855 3915b0a 8876855 3915b0a 8876855 06c2f0c 099ed57 ed68cb3 099ed57 ecc8128 ed68cb3 099ed57 ed68cb3 f70bce8 06c2f0c ed68cb3 03f6062 ed68cb3 06c2f0c 099ed57 06c2f0c ed68cb3 7aa704e 06c2f0c ed68cb3 099ed57 ecc8128 ed68cb3 2ece379 099ed57 1574c05 ecc8128 1574c05 c83abcd 1574c05 c83abcd 1574c05 19cd56c 1574c05 19cd56c ecc8128 099ed57 ed68cb3 259ab7d ecc8128 099ed57 ed68cb3 099ed57 e19804d 7aa704e 8876855 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
from fastapi.responses import FileResponse
from pydantic import BaseModel
from typing import Optional, Dict, Any, List
import uvicorn
import logging
import os
import pandas as pd
from datetime import datetime
import shutil
from pathlib import Path
import numpy as np
import json
import joblib
from sklearn.metrics import classification_report
from sklearn.multioutput import MultiOutputClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
import xgboost as xgb
import traceback
from xgboost import XGBClassifier
# Import existing utilities
from dataset_utils import (
load_and_preprocess_data,
save_label_encoders,
load_label_encoders
)
from config import (
TEXT_COLUMN,
LABEL_COLUMNS,
BATCH_SIZE,
MODEL_SAVE_DIR
)
from models.tfidf_xgb import TfidfXGBoost
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(title="XGB Compliance Predictor API")
UPLOAD_DIR = Path("uploads")
MODEL_SAVE_DIR = Path("saved_models")
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
MODEL_SAVE_DIR.mkdir(parents=True, exist_ok=True)
# Define paths for vectorizer, model, and encoders
TFIDF_PATH = os.path.join(str(MODEL_SAVE_DIR), "tfidf_vectorizer.pkl")
MODEL_PATH = os.path.join(str(MODEL_SAVE_DIR), "xgb_models.pkl")
ENCODERS_PATH = os.path.join(os.path.dirname(__file__), "label_encoders.pkl")
training_status = {
"is_training": False,
"current_epoch": 0,
"total_epochs": 0,
"current_loss": 0.0,
"start_time": None,
"end_time": None,
"status": "idle",
"metrics": None
}
class TrainingConfig(BaseModel):
batch_size: int = 32
num_epochs: int = 1 # Not used for LGBM, but kept for API compatibility
random_state: int = 42
class TrainingResponse(BaseModel):
message: str
training_id: str
status: str
download_url: Optional[str] = None
class ValidationResponse(BaseModel):
message: str
metrics: Dict[str, Any]
predictions: List[Dict[str, Any]]
class PredictionResponse(BaseModel):
message: str
predictions: List[Dict[str, Any]]
class TransactionData(BaseModel):
Transaction_Id: str
Hit_Seq: int
Hit_Id_List: str
Origin: str
Designation: str
Keywords: str
Name: str
SWIFT_Tag: str
Currency: str
Entity: str
Message: str
City: str
Country: str
State: str
Hit_Type: str
Record_Matching_String: str
WatchList_Match_String: str
Payment_Sender_Name: Optional[str] = ""
Payment_Reciever_Name: Optional[str] = ""
Swift_Message_Type: str
Text_Sanction_Data: str
Matched_Sanctioned_Entity: str
Is_Match: int
Red_Flag_Reason: str
Risk_Level: str
Risk_Score: float
Risk_Score_Description: str
CDD_Level: str
PEP_Status: str
Value_Date: str
Last_Review_Date: str
Next_Review_Date: str
Sanction_Description: str
Checker_Notes: str
Sanction_Context: str
Maker_Action: str
Customer_ID: int
Customer_Type: str
Industry: str
Transaction_Date_Time: str
Transaction_Type: str
Transaction_Channel: str
Originating_Bank: str
Beneficiary_Bank: str
Geographic_Origin: str
Geographic_Destination: str
Match_Score: float
Match_Type: str
Sanctions_List_Version: str
Screening_Date_Time: str
Risk_Category: str
Risk_Drivers: str
Alert_Status: str
Investigation_Outcome: str
Case_Owner_Analyst: str
Escalation_Level: str
Escalation_Date: str
Regulatory_Reporting_Flags: bool
Audit_Trail_Timestamp: str
Source_Of_Funds: str
Purpose_Of_Transaction: str
Beneficial_Owner: str
Sanctions_Exposure_History: bool
class PredictionRequest(BaseModel):
transaction_data: TransactionData
model_name: str = "xgb_models"
class Config:
protected_namespaces = ()
class BatchPredictionResponse(BaseModel):
message: str
predictions: List[Dict[str, Any]]
metrics: Optional[Dict[str, Any]] = None
@app.get("/")
async def root():
return {"message": "XGB Compliance Predictor API"}
@app.get("/v1/xgb/health")
async def health_check():
return {"status": "healthy"}
@app.get("/v1/xgb/training-status")
async def get_training_status():
return training_status
@app.post("/v1/xgb/train", response_model=TrainingResponse)
async def start_training(
config: str = Form(...),
background_tasks: BackgroundTasks = None,
file: UploadFile = File(...)
):
if training_status["is_training"]:
raise HTTPException(status_code=400, detail="Training is already in progress")
if not file.filename.endswith('.csv'):
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
try:
config_dict = json.loads(config)
training_config = TrainingConfig(**config_dict)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid config parameters: {str(e)}")
file_path = UPLOAD_DIR / file.filename
with file_path.open("wb") as buffer:
shutil.copyfileobj(file.file, buffer)
training_id = datetime.now().strftime("%Y%m%d_%H%M%S")
training_status.update({
"is_training": True,
"current_epoch": 0,
"total_epochs": 1,
"start_time": datetime.now().isoformat(),
"status": "starting"
})
background_tasks.add_task(train_model_task, training_config, str(file_path), training_id)
download_url = f"/v1/xgb/download-model/{training_id}"
return TrainingResponse(
message="Training started successfully",
training_id=training_id,
status="started",
download_url=download_url
)
@app.post("/v1/xgb/validate")
async def validate_model(
file: UploadFile = File(...),
model_name: str = "xgb_models"
):
if not file.filename.endswith('.csv'):
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
try:
file_path = UPLOAD_DIR / file.filename
with file_path.open("wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Load and preprocess data
data_df, label_encoders = load_and_preprocess_data(str(file_path))
# Load model and vectorizer
model_path = MODEL_SAVE_DIR / f"{model_name}.pkl"
if not model_path.exists():
raise HTTPException(status_code=404, detail="XGB model file not found")
model = TfidfXGBoost(label_encoders)
model.load_model(model_name)
tfidf = joblib.load(TFIDF_PATH)
# Extract and vectorize text
X_text = data_df[TEXT_COLUMN]
y = data_df[LABEL_COLUMNS]
if not isinstance(X_text, pd.Series) or not pd.api.types.is_string_dtype(X_text):
raise HTTPException(status_code=400, detail=f"TEXT_COLUMN ('{TEXT_COLUMN}') must be a pandas Series of strings. Got type: {type(X_text)}, dtype: {getattr(X_text, 'dtype', None)}")
X_vec = tfidf.transform(X_text)
# Evaluate
reports, y_true_list, y_pred_list = model.evaluate(X_vec, y)
all_probs = model.predict_proba(X_vec)
predictions = []
for i, col in enumerate(LABEL_COLUMNS):
label_encoder = label_encoders[col]
true_labels_orig = label_encoder.inverse_transform(y_true_list[i])
pred_labels_orig = label_encoder.inverse_transform(y_pred_list[i])
for true, pred, probs in zip(true_labels_orig, pred_labels_orig, all_probs[i]):
class_probs = {label: float(prob) for label, prob in zip(label_encoder.classes_, probs)}
predictions.append({
"field": col,
"true_label": true,
"predicted_label": pred,
"probabilities": class_probs
})
return ValidationResponse(
message="Validation completed successfully",
metrics=reports,
predictions=predictions
)
except Exception as e:
logger.error(f"Validation failed: {str(e)}")
raise HTTPException(status_code=500, detail=f"Validation failed: {str(e)}")
finally:
if os.path.exists(file_path):
os.remove(file_path)
# Pydantic response schema
class PredictionItem(BaseModel):
field: str
predicted_label: str
probabilities: dict
class PredictionResponse(BaseModel):
message: str
predictions: List[PredictionItem]
@app.post("/v1/xgb/predict", response_model=PredictionResponse)
async def predict_model(
file: UploadFile = File(...),
model_name: str = "xgb_models"
):
if not file.filename.endswith('.csv'):
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
file_path = UPLOAD_DIR / file.filename
try:
# Save uploaded file
with file_path.open("wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Load and preprocess
data_df, label_encoders = load_and_preprocess_data(str(file_path))
model_path = MODEL_SAVE_DIR / f"{model_name}.pkl"
if not model_path.exists():
raise HTTPException(status_code=404, detail=f"Model file '{model_name}.pkl' not found")
# Load model and vectorizer
model = TfidfXGBoost(label_encoders)
model.load_model(model_name)
tfidf = joblib.load(TFIDF_PATH)
# Extract and validate text
X_text = data_df[TEXT_COLUMN]
if not isinstance(X_text, pd.Series) or not pd.api.types.is_string_dtype(X_text):
raise HTTPException(status_code=400, detail=f"TEXT_COLUMN ('{TEXT_COLUMN}') must be a pandas Series of strings.")
X_vec = tfidf.transform(X_text)
# Predict
y_pred_array = model.predict(X_vec)
all_probs_list = model.predict_proba(X_vec)
predictions = []
for row_idx in range(X_vec.shape[0]):
for label_idx, col in enumerate(LABEL_COLUMNS):
label_encoder = label_encoders.get(col)
if label_encoder is None:
raise HTTPException(status_code=500, detail=f"Label encoder not found for column: {col}")
# Predicted class and decode
pred_class_idx = y_pred_array[row_idx, label_idx]
pred_label = label_encoder.inverse_transform([pred_class_idx])[0]
# Probability distribution
class_prob_dist = all_probs_list[label_idx][row_idx]
class_probs = {
label_encoder.classes_[i]: float(prob)
for i, prob in enumerate(class_prob_dist)
}
predictions.append({
"field": col,
"predicted_label": pred_label,
"probabilities": class_probs
})
return PredictionResponse(
message="Prediction completed successfully",
predictions=predictions
)
except Exception as e:
logger.error(f"Prediction failed: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
finally:
if file_path.exists():
file_path.unlink()
@app.get("/v1/xgb/download-model/{model_id}")
async def download_model(model_id: str):
model_path = MODEL_SAVE_DIR / f"{model_id}.pkl"
if not model_path.exists():
raise HTTPException(status_code=404, detail="Model not found")
return FileResponse(
path=model_path,
filename=f"xgb_model_{model_id}.pkl",
media_type="application/octet-stream"
)
async def train_model_task(config: TrainingConfig, file_path: str, training_id: str):
try:
data_df_original, label_encoders = load_and_preprocess_data(file_path)
save_label_encoders(label_encoders)
X = data_df_original[TEXT_COLUMN]
y = data_df_original[LABEL_COLUMNS]
model = TfidfXGB(label_encoders)
model.train(X, y)
model.save_model(training_id)
training_status.update({
"is_training": False,
"end_time": datetime.now().isoformat(),
"status": "completed"
})
except Exception as e:
logger.error(f"Training failed: {str(e)}")
training_status.update({
"is_training": False,
"end_time": datetime.now().isoformat(),
"status": "failed",
"error": str(e)
})
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port) |