Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import sys | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| import streamlit as st | |
| from PIL import Image | |
| from omegaconf import OmegaConf | |
| from einops import repeat | |
| from streamlit_drawable_canvas import st_canvas | |
| from imwatermark import WatermarkEncoder | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.util import instantiate_from_config | |
| torch.set_grad_enabled(False) | |
| def put_watermark(img, wm_encoder=None): | |
| if wm_encoder is not None: | |
| img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| img = wm_encoder.encode(img, 'dwtDct') | |
| img = Image.fromarray(img[:, :, ::-1]) | |
| return img | |
| def initialize_model(config, ckpt): | |
| config = OmegaConf.load(config) | |
| model = instantiate_from_config(config.model) | |
| model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| sampler = DDIMSampler(model) | |
| return sampler | |
| def make_batch_sd( | |
| image, | |
| mask, | |
| txt, | |
| device, | |
| num_samples=1): | |
| image = np.array(image.convert("RGB")) | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| mask = np.array(mask.convert("L")) | |
| mask = mask.astype(np.float32) / 255.0 | |
| mask = mask[None, None] | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| mask = torch.from_numpy(mask) | |
| masked_image = image * (mask < 0.5) | |
| batch = { | |
| "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), | |
| "txt": num_samples * [txt], | |
| "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), | |
| "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), | |
| } | |
| return batch | |
| def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512): | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = sampler.model | |
| print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
| wm = "SDV2" | |
| wm_encoder = WatermarkEncoder() | |
| wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
| prng = np.random.RandomState(seed) | |
| start_code = prng.randn(num_samples, 4, h // 8, w // 8) | |
| start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) | |
| with torch.no_grad(), \ | |
| torch.autocast("cuda"): | |
| batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples) | |
| c = model.cond_stage_model.encode(batch["txt"]) | |
| c_cat = list() | |
| for ck in model.concat_keys: | |
| cc = batch[ck].float() | |
| if ck != model.masked_image_key: | |
| bchw = [num_samples, 4, h // 8, w // 8] | |
| cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) | |
| else: | |
| cc = model.get_first_stage_encoding(model.encode_first_stage(cc)) | |
| c_cat.append(cc) | |
| c_cat = torch.cat(c_cat, dim=1) | |
| # cond | |
| cond = {"c_concat": [c_cat], "c_crossattn": [c]} | |
| # uncond cond | |
| uc_cross = model.get_unconditional_conditioning(num_samples, "") | |
| uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} | |
| shape = [model.channels, h // 8, w // 8] | |
| samples_cfg, intermediates = sampler.sample( | |
| ddim_steps, | |
| num_samples, | |
| shape, | |
| cond, | |
| verbose=False, | |
| eta=1.0, | |
| unconditional_guidance_scale=scale, | |
| unconditional_conditioning=uc_full, | |
| x_T=start_code, | |
| ) | |
| x_samples_ddim = model.decode_first_stage(samples_cfg) | |
| result = torch.clamp((x_samples_ddim + 1.0) / 2.0, | |
| min=0.0, max=1.0) | |
| result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 | |
| return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] | |
| def run(): | |
| st.title("Stable Diffusion Inpainting") | |
| sampler = initialize_model(sys.argv[1], sys.argv[2]) | |
| image = st.file_uploader("Image", ["jpg", "png"]) | |
| if image: | |
| image = Image.open(image) | |
| w, h = image.size | |
| print(f"loaded input image of size ({w}, {h})") | |
| width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 | |
| image = image.resize((width, height)) | |
| prompt = st.text_input("Prompt") | |
| seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0) | |
| num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1) | |
| scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1) | |
| ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1) | |
| fill_color = "rgba(255, 255, 255, 0.0)" | |
| stroke_width = st.number_input("Brush Size", | |
| value=64, | |
| min_value=1, | |
| max_value=100) | |
| stroke_color = "rgba(255, 255, 255, 1.0)" | |
| bg_color = "rgba(0, 0, 0, 1.0)" | |
| drawing_mode = "freedraw" | |
| st.write("Canvas") | |
| st.caption( | |
| "Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).") | |
| canvas_result = st_canvas( | |
| fill_color=fill_color, | |
| stroke_width=stroke_width, | |
| stroke_color=stroke_color, | |
| background_color=bg_color, | |
| background_image=image, | |
| update_streamlit=False, | |
| height=height, | |
| width=width, | |
| drawing_mode=drawing_mode, | |
| key="canvas", | |
| ) | |
| if canvas_result: | |
| mask = canvas_result.image_data | |
| mask = mask[:, :, -1] > 0 | |
| if mask.sum() > 0: | |
| mask = Image.fromarray(mask) | |
| result = inpaint( | |
| sampler=sampler, | |
| image=image, | |
| mask=mask, | |
| prompt=prompt, | |
| seed=seed, | |
| scale=scale, | |
| ddim_steps=ddim_steps, | |
| num_samples=num_samples, | |
| h=height, w=width | |
| ) | |
| st.write("Inpainted") | |
| for image in result: | |
| st.image(image, output_format='PNG') | |
| if __name__ == "__main__": | |
| run() |