import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Mistral 7B Instruct v0.3</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3"><b>mistralai/Mistral-7B-Instruct-v0.3</b></a>. The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3, which is a Mistral-7B-v0.2 with extended vocabulary. Feel free to play with it, or duplicate to run privately!</p>
<p>šŸ”Ž For more details about the release and how to use the model with <code>transformers</code>, visit the model-card linked above.</p>
<p>šŸ¦• The Instruct model - Has Extended vocabulary to 32768. Supports v3 Tokenizer. Supports function calling.</p>
</div>
'''


PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/mistralai/Mistral-7B-Instruct-v0.3.png" style="width: 70%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <p style="font-size: 20px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", device_map="auto")
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=120)
def chat_mistral7b_v0dot3(message: str, 
              history: list, 
              temperature: float, 
              max_new_tokens: int
             ) -> str:
    """
    Generate a streaming response using the mistralai/Mistral-7B-Instruct-v0.3 model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    conversation = []
    for user, assistant in history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids= input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.             
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        #print(outputs)
        yield "".join(outputs)
        

# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=chat_mistral7b_v0dot3,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="āš™ļø Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0,
                      maximum=1, 
                      step=0.1,
                      value=0.95, 
                      label="Temperature", 
                      render=False),
            gr.Slider(minimum=128, 
                      maximum=4096,
                      step=1,
                      value=512, 
                      label="Max new tokens", 
                      render=False ),
            ],
        examples=[
            ['How to setup a human base on Mars? Give short answer.'],
            ['Explain theory of relativity to me like I’m 8 years old.'],
            ['What is 9,000 * 9,000?'],
            ['Write a pun-filled happy birthday message to my friend Alex.'],
            ['Justify why a penguin might make a good king of the jungle.']
            ],
        cache_examples=False,
                     )
    


if __name__ == "__main__":
    demo.launch()