""" codes adapted from https://github.com/suno-ai/bark """ import math from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F @dataclass class GPTConfig: block_size: int = 1024 input_vocab_size: int = 10_048 output_vocab_size: int = 10_048 n_layer: int = 12 n_head: int = 12 n_embd: int = 768 dropout: float = 0.0 bias: bool = ( True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster ) @dataclass class FineGPTConfig(GPTConfig): n_codes_total: int = 8 n_codes_given: int = 1 class LayerNorm(nn.Module): """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False""" def __init__(self, ndim: int, bias: bool) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class MLP(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) self.gelu = nn.GELU() def forward(self, x) -> torch.Tensor: x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class CausalSelfAttention(nn.Module): def __init__(self, config: GPTConfig) -> None: super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") if not self.flash: # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0") # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer( "bias", torch.tril(torch.ones(config.block_size, config.block_size)).view( 1, 1, config.block_size, config.block_size ), ) def forward( self, x: torch.Tensor, past_kv: torch.Tensor = None, use_cache: bool = False ): B, T, C = ( x.size() ) # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) if past_kv is not None: past_key = past_kv[0] past_value = past_kv[1] k = torch.cat((past_key, k), dim=-2) v = torch.cat((past_value, v), dim=-2) FULL_T = k.shape[-2] if use_cache is True: present = (k, v) else: present = None # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels if past_kv is not None: # When `past_kv` is provided, we're doing incremental decoding and `q.shape[2] == 1`: q only contains # the query for the last token. scaled_dot_product_attention interprets this as the first token in the # sequence, so if is_causal=True it will mask out all attention from it. This is not what we want, so # to work around this we set is_causal=False. is_causal = False else: is_causal = True y = torch.nn.functional.scaled_dot_product_attention( q, k, v, dropout_p=self.dropout, is_causal=is_causal ) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill( self.bias[:, :, FULL_T - T : FULL_T, :FULL_T] == 0, float("-inf") ) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = ( y.transpose(1, 2).contiguous().view(B, T, C) ) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return (y, present) class Block(nn.Module): def __init__(self, config: GPTConfig, layer_idx: int) -> None: super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) self.layer_idx = layer_idx def forward( self, x: torch.Tensor, past_kv: torch.Tensor = None, use_cache: bool = False ): attn_output, prev_kvs = self.attn( self.ln_1(x), past_kv=past_kv, use_cache=use_cache ) x = x + attn_output x = x + self.mlp(self.ln_2(x)) return (x, prev_kvs) class GPT(nn.Module): def __init__(self, config: GPTConfig): super().__init__() assert config.input_vocab_size is not None assert config.output_vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.input_vocab_size, config.n_embd), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([Block(config, idx) for idx in range(config.n_layer)]), ln_f=LayerNorm(config.n_embd, bias=config.bias), ) ) self.lm_head = nn.Linear(config.n_embd, config.output_vocab_size, bias=False) # Note: lm_head lacks bias, implying parameter sharing with wte for efficiency def get_num_params(self, non_embedding: bool = True) -> int: """ Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them. """ n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wte.weight.numel() n_params -= self.transformer.wpe.weight.numel() return n_params def forward( self, idx: torch.Tensor, merge_context: bool = False, past_kv: torch.Tensor = None, position_ids: torch.Tensor = None, use_cache: bool = False, ): device = idx.device b, t = idx.size() if past_kv is not None: # When past_kv is provided, this is optimized for autoregressive generation assert ( t == 1 ), "should only pass in the last token of the sequence when using kv_cache" # Shape: (b, 1, n_embd), single token case tok_emb = self.transformer.wte(idx) else: if merge_context: # Custom feature: assumes first 256 tokens are one context, next 256 another, rest is sequence assert idx.shape[1] >= 256 + 256 + 1 t = idx.shape[1] - 256 # Adjusts t for merged context length else: assert ( t <= self.config.block_size ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" if merge_context: # Merges two contexts by adding their embeddings, not a standard GPT behavior tok_emb = torch.cat( [ self.transformer.wte(idx[:, :256]) + self.transformer.wte(idx[:, 256 : 256 + 256]), self.transformer.wte(idx[:, 256 + 256 :]), ], dim=1, ) else: tok_emb = self.transformer.wte(idx) if past_kv is None: past_length = 0 # Empty cache for each layer past_kv = tuple([None] * len(self.transformer.h)) else: # Infers prior sequence length from cache past_length = past_kv[0][0].size(-2) if position_ids is None: position_ids = torch.arange( past_length, t + past_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) assert position_ids.shape == (1, t) pos_emb = self.transformer.wpe(position_ids) x = self.transformer.drop(tok_emb + pos_emb) # Prepares cache for key-value pairs if enabled new_kv = () if use_cache else None for i, (block, past_layer_kv) in enumerate(zip(self.transformer.h, past_kv)): x, kv = block(x, past_kv=past_layer_kv, use_cache=use_cache) if use_cache: new_kv = new_kv + (kv,) # Accumulates new key-value pairs for caching x = self.transformer.ln_f(x) # Optimization: only computes logits for the last token, efficient for generation logits = self.lm_head(x[:, [-1], :]) # Preserves time dim with [-1] return ( logits, new_kv, ) # Returns tuple: logits for next token, cache if requested class NonCausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") def forward(self, x): B, T, C = ( x.size() ) # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose( 1, 2 ) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=False ) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = ( y.transpose(1, 2).contiguous().view(B, T, C) ) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class FineBlock(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = NonCausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class FineGPT(GPT): def __init__(self, config): super().__init__(config) del self.lm_head self.config = config self.n_codes_total = config.n_codes_total self.transformer = nn.ModuleDict( dict( wtes=nn.ModuleList( [ nn.Embedding(config.input_vocab_size, config.n_embd) for _ in range(config.n_codes_total) ] ), wpe=nn.Embedding(config.block_size, config.n_embd), drop=nn.Dropout(config.dropout), h=nn.ModuleList([FineBlock(config) for _ in range(config.n_layer)]), ln_f=nn.LayerNorm(config.n_embd), ) ) self.lm_heads = nn.ModuleList( [ nn.Linear(config.n_embd, config.output_vocab_size, bias=False) for _ in range(config.n_codes_given, self.n_codes_total) ] ) for i in range(self.n_codes_total - config.n_codes_given): self.transformer.wtes[i + 1].weight = self.lm_heads[i].weight def forward(self, pred_idx, idx): device = idx.device b, t, codes = idx.size() assert ( t <= self.config.block_size ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" assert pred_idx > 0, "cannot predict 0th codebook" assert codes == self.n_codes_total, (b, t, codes) pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze( 0 ) # shape (1, t) # forward the GPT model itself tok_embs = [ wte(idx[:, :, i]).unsqueeze(-1) for i, wte in enumerate(self.transformer.wtes) ] # token embeddings of shape (b, t, n_embd) tok_emb = torch.cat(tok_embs, dim=-1) pos_emb = self.transformer.wpe( pos ) # position embeddings of shape (1, t, n_embd) x = tok_emb[:, :, :, : pred_idx + 1].sum(dim=-1) x = self.transformer.drop(x + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) logits = self.lm_heads[pred_idx - self.config.n_codes_given](x) return logits def get_num_params(self, non_embedding=True): """ Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them. """ n_params = sum(p.numel() for p in self.parameters()) if non_embedding: for wte in self.transformer.wtes: n_params -= wte.weight.numel() n_params -= self.transformer.wpe.weight.numel() return n_params