import gradio as gr from config import * from event_handlers import * # --- Gradio UI Definition --- # theme = gr.themes.Default(primary_hue=gr.themes.colors.blue).set() theme = gr.themes.Ocean(primary_hue=gr.themes.colors.blue).set() with gr.Blocks( theme=theme, title="grAudio", css=".gradio-container { max-width: 95% !important; }", ) as app: # --- Global State --- initial_audio_list = load_existing_audio() audio_list_state = gr.State(value=initial_audio_list) newly_generated_state = gr.State([]) # State to store the index of the selected row in the DataFrame selected_index_state = gr.State(-1) # -1 means nothing selected # --- UI Layout --- gr.Markdown("# Generate Audio from text") with gr.Row(equal_height=False): # --- Column 1: Configuration (Left) --- with gr.Column(scale=2, min_width=350): gr.Markdown("### Generation Configuration") with gr.Accordion("Batch size & Temperatures", open=True): batch_size_number = gr.Number( value=1, label="Seed", minimum=0, step=1, scale=1, ) semantic_temp_slider = gr.Slider( 0.1, 1.0, value=0.7, step=0.1, label="Semantic Temp" ) coarse_temp_slider = gr.Slider( 0.1, 1.0, value=0.7, step=0.1, label="Coarse Temp" ) fine_temp_slider = gr.Slider( 0.1, 1.0, value=0.7, step=0.1, label="Fine Temp" ) with gr.Accordion("Model, Devices", open=True): model_type_dropdown = gr.Dropdown( choices=["small", "large"], value="small", label="Model Type" ) available_devices, best_device = get_available_torch_devices() device_dropdown = gr.Dropdown( choices=available_devices, value=best_device, label="Device" ) with gr.Accordion("Voice Prompt", open=True): prompt_dropdown = gr.Dropdown( choices=get_available_prompts(), label="Select Voice Prompt", info="Optional", multiselect=False, allow_custom_value=False, ) refresh_prompts_btn = gr.Button( "Refresh Prompts", variant="secondary", size="sm" ) with gr.Accordion("Create New Voice Prompt", open=False): prompt_audio_upload = gr.File( value=None, file_count="single", label="Upload Audio (.wav, .mp3)", file_types=["audio"], type="filepath", ) create_prompt_btn = gr.Button("Create Prompt", variant="secondary") # --- Column 2: Text Input & Generate Button (Middle) --- with gr.Column(scale=4, min_width=600): gr.Markdown("### Text Input") text_input_block = gr.Textbox( lines=30, placeholder="""Long text will be split to sentences using only a dot `.` as a separator.\nMake sure one sentence can be spoken in less than 13 seconds or the speech will be trim on the end.\nIf input text with more than one sentence, make sure to choose a prompt to have consistent voice across sentences.\nAll split sentences are running in one batch with a batch size equal to the number of sentences in the text, assuming zero GPU can take a very large batch size.\nGenerated audio are not guaranteed to follow your text closely, this is a text to audio model not a text to speech model""", label="Text Prompts", ) generate_btn = gr.Button("Generate", variant="primary") # --- Column 3: Generated Audio Display (Right) - SIMPLIFIED --- with gr.Column(scale=2, min_width=250): gr.Markdown("### Generated Audio") # DataFrame to display the list audio_dataframe = gr.DataFrame( headers=["File", "Prompt", "Duration (s)"], datatype=["str", "str", "str"], interactive=True, # Allow row selection row_count=(10, "dynamic"), # Show ~10 rows, scroll if more col_count=(3, "fixed"), # value=format_audio_list_for_dataframe(initial_audio_list) # Set initial value via app.load ) # Single audio player for the selected item selected_audio_player = gr.Audio( label="Selected Audio", type="filepath", interactive=False, # Only for playback ) # Single delete button delete_selected_btn = gr.Button("Delete Selected Audio", variant="stop") # --- Event Handling --- # 1. Refresh Prompts Button refresh_prompts_btn.click( fn=update_available_prompts, inputs=None, outputs=[prompt_dropdown] ) # 2. Create Prompt Button create_prompt_btn.click( fn=create_audio_prompt, inputs=[prompt_audio_upload, device_dropdown], outputs=[prompt_dropdown], ) # 3. Generate Button -> Calls backend -> Outputs to temporary state generate_btn.click( fn=generate_batch_audio, inputs=[ text_input_block, semantic_temp_slider, coarse_temp_slider, fine_temp_slider, batch_size_number, model_type_dropdown, device_dropdown, prompt_dropdown, ], outputs=[newly_generated_state], ) # 4. Temporary State Change -> Updates the main audio list state newly_generated_state.change( fn=update_audio_list, inputs=[newly_generated_state, audio_list_state], outputs=[audio_list_state], show_progress="hidden", ) # 5. Main Audio List State Change -> Updates the DataFrame display # Also clears selection when the list updates. audio_list_state.change( fn=format_audio_list_for_dataframe, inputs=[audio_list_state], outputs=[audio_dataframe], show_progress="hidden", ).then( # Chain: after updating dataframe, clear selection player and index fn=lambda: (None, -1), # Function returning values to clear outputs inputs=None, outputs=[selected_audio_player, selected_index_state], show_progress="hidden", queue=False, ) # 6. DataFrame Row Selection -> Updates the selected index and audio player audio_dataframe.select( fn=handle_row_selection, inputs=[audio_list_state], # Pass the full list state to find the filepath outputs=[ selected_audio_player, selected_index_state, ], show_progress="hidden", ) # 7. Delete Selected Button Click -> Calls delete handler delete_selected_btn.click( fn=handle_delete_selected, inputs=[selected_index_state, audio_list_state], # Pass index and list outputs=[ audio_list_state, # Update the main list state selected_index_state, # Clear the selected index selected_audio_player, # Clear the audio player ], show_progress="hidden", ) # 8. Initial Load: Populate the DataFrame app.load( fn=format_audio_list_for_dataframe, inputs=[audio_list_state], # Use the initial state value outputs=[audio_dataframe], # Render initial data into the DataFrame ) if __name__ == "__main__": app.launch(debug=True, share=False)