File size: 7,790 Bytes
37a9836
 
 
 
 
dcf09f2
37a9836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bf7ff9
37a9836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
from config import *
from event_handlers import *



# --- Gradio UI Definition ---
# theme = gr.themes.Default(primary_hue=gr.themes.colors.blue).set()
theme = gr.themes.Ocean(primary_hue=gr.themes.colors.blue).set()

with gr.Blocks(
    theme=theme,
    title="grAudio",
    css=".gradio-container { max-width: 95% !important; }",
) as app:

    # --- Global State ---
    initial_audio_list = load_existing_audio()
    audio_list_state = gr.State(value=initial_audio_list)
    newly_generated_state = gr.State([])
    # State to store the index of the selected row in the DataFrame
    selected_index_state = gr.State(-1)  # -1 means nothing selected

    # --- UI Layout ---
    gr.Markdown("# Generate Audio from text")
    with gr.Row(equal_height=False):
        # --- Column 1: Configuration (Left) ---
        with gr.Column(scale=2, min_width=350):
            gr.Markdown("### Generation Configuration")
            with gr.Accordion("Batch size & Temperatures", open=True):
                batch_size_number = gr.Number(
                    value=1,
                    label="Seed",
                    minimum=0,
                    step=1,
                    scale=1,
                )
                semantic_temp_slider = gr.Slider(
                    0.1, 1.0, value=0.7, step=0.1, label="Semantic Temp"
                )
                coarse_temp_slider = gr.Slider(
                    0.1, 1.0, value=0.7, step=0.1, label="Coarse Temp"
                )
                fine_temp_slider = gr.Slider(
                    0.1, 1.0, value=0.7, step=0.1, label="Fine Temp"
                )
            with gr.Accordion("Model, Devices", open=True):
                model_type_dropdown = gr.Dropdown(
                    choices=["small", "large"], value="small", label="Model Type"
                )

                available_devices, best_device = get_available_torch_devices()
                device_dropdown = gr.Dropdown(
                    choices=available_devices, value=best_device, label="Device"
                )
            with gr.Accordion("Voice Prompt", open=True):
                prompt_dropdown = gr.Dropdown(
                    choices=get_available_prompts(),
                    label="Select Voice Prompt",
                    info="Optional",
                    multiselect=False,
                    allow_custom_value=False,
                )
                refresh_prompts_btn = gr.Button(
                    "Refresh Prompts", variant="secondary", size="sm"
                )
            with gr.Accordion("Create New Voice Prompt", open=False):
                prompt_audio_upload = gr.File(
                    value=None,
                    file_count="single",
                    label="Upload Audio (.wav, .mp3)",
                    file_types=["audio"],
                    type="filepath",
                )
                create_prompt_btn = gr.Button("Create Prompt", variant="secondary")

        # --- Column 2: Text Input & Generate Button (Middle) ---
        with gr.Column(scale=4, min_width=600):
            gr.Markdown("### Text Input")
            text_input_block = gr.Textbox(
                lines=30,
                placeholder="""Long text will be split to sentences using only a dot `.` as a separator.\nMake sure one sentence can be spoken in less than 13 seconds or the speech will be trim on the end.\nIf input text with more than one sentence, make sure to choose a prompt to have consistent voice across sentences.\nAll split sentences are running in one batch with a batch size equal to the number of sentences in the text, assuming zero GPU can take a very large batch size.\nGenerated audio are not guaranteed to follow your text closely, this is a text to audio model not a text to speech model""",
                label="Text Prompts",
            )
            generate_btn = gr.Button("Generate", variant="primary")
        # --- Column 3: Generated Audio Display (Right) - SIMPLIFIED ---
        with gr.Column(scale=2, min_width=250):
            gr.Markdown("### Generated Audio")
            # DataFrame to display the list
            audio_dataframe = gr.DataFrame(
                headers=["File", "Prompt", "Duration (s)"],
                datatype=["str", "str", "str"],
                interactive=True,  # Allow row selection
                row_count=(10, "dynamic"),  # Show ~10 rows, scroll if more
                col_count=(3, "fixed"),
                # value=format_audio_list_for_dataframe(initial_audio_list) # Set initial value via app.load
            )
            # Single audio player for the selected item
            selected_audio_player = gr.Audio(
                label="Selected Audio",
                type="filepath",
                interactive=False,  # Only for playback
            )
            # Single delete button
            delete_selected_btn = gr.Button("Delete Selected Audio", variant="stop")

    # --- Event Handling ---

    # 1. Refresh Prompts Button
    refresh_prompts_btn.click(
        fn=update_available_prompts, inputs=None, outputs=[prompt_dropdown]
    )

    # 2. Create Prompt Button
    create_prompt_btn.click(
        fn=create_audio_prompt,
        inputs=[prompt_audio_upload, device_dropdown],
        outputs=[prompt_dropdown],
    )

    # 3. Generate Button -> Calls backend -> Outputs to temporary state
    generate_btn.click(
        fn=generate_batch_audio,
        inputs=[
            text_input_block,
            semantic_temp_slider,
            coarse_temp_slider,
            fine_temp_slider,
            batch_size_number,
            model_type_dropdown,
            device_dropdown,
            prompt_dropdown,
        ],
        outputs=[newly_generated_state],
    )

    # 4. Temporary State Change -> Updates the main audio list state
    newly_generated_state.change(
        fn=update_audio_list,
        inputs=[newly_generated_state, audio_list_state],
        outputs=[audio_list_state],
        show_progress="hidden",
    )

    # 5. Main Audio List State Change -> Updates the DataFrame display
    #    Also clears selection when the list updates.
    audio_list_state.change(
        fn=format_audio_list_for_dataframe,
        inputs=[audio_list_state],
        outputs=[audio_dataframe],
        show_progress="hidden",
    ).then(  # Chain: after updating dataframe, clear selection player and index
        fn=lambda: (None, -1),  # Function returning values to clear outputs
        inputs=None,
        outputs=[selected_audio_player, selected_index_state],
        show_progress="hidden",
        queue=False,
    )

    # 6. DataFrame Row Selection -> Updates the selected index and audio player
    audio_dataframe.select(
        fn=handle_row_selection,
        inputs=[audio_list_state],  # Pass the full list state to find the filepath
        outputs=[
            selected_audio_player,
            selected_index_state,
        ],
        show_progress="hidden",
    )

    # 7. Delete Selected Button Click -> Calls delete handler
    delete_selected_btn.click(
        fn=handle_delete_selected,
        inputs=[selected_index_state, audio_list_state],  # Pass index and list
        outputs=[
            audio_list_state,  # Update the main list state
            selected_index_state,  # Clear the selected index
            selected_audio_player,  # Clear the audio player
        ],
        show_progress="hidden",
    )

    # 8. Initial Load: Populate the DataFrame
    app.load(
        fn=format_audio_list_for_dataframe,
        inputs=[audio_list_state],  # Use the initial state value
        outputs=[audio_dataframe],  # Render initial data into the DataFrame
    )


if __name__ == "__main__":
    app.launch(debug=True, share=False)