huabdul commited on
Commit
e22ca40
·
1 Parent(s): 52b7de4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -3
app.py CHANGED
@@ -94,7 +94,7 @@ This app plots the decision surface of four classifiers on two selected features
94
 
95
  Use the controls below to tune the parameters of the classifiers and the weights of each of them in the soft voting classifier and click submit. The more weight you assign to a classifier, the more importance will be assigned to its predictions compared to the other classifiers in the vote.
96
 
97
- Created by [@huabdul]() based on [scikit-learn docs]().
98
  '''
99
 
100
  with gr.Blocks(analytics_enabled=False) as demo:
@@ -121,9 +121,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
121
  plot = gr.Plot(show_label=False)
122
 
123
  btn.click(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])
124
-
125
  demo.load(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])
126
 
127
-
128
  demo.launch()
129
  #==================================================
 
94
 
95
  Use the controls below to tune the parameters of the classifiers and the weights of each of them in the soft voting classifier and click submit. The more weight you assign to a classifier, the more importance will be assigned to its predictions compared to the other classifiers in the vote.
96
 
97
+ Created by [@huabdul](https://huggingface.co/huabdul) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_decision_regions.html).
98
  '''
99
 
100
  with gr.Blocks(analytics_enabled=False) as demo:
 
121
  plot = gr.Plot(show_label=False)
122
 
123
  btn.click(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])
 
124
  demo.load(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])
125
 
 
126
  demo.launch()
127
  #==================================================