|
|
|
|
|
|
|
|
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
|
|
from sklearn import decomposition |
|
from sklearn import datasets |
|
|
|
|
|
import mpl_toolkits.mplot3d |
|
matplotlib.use('agg') |
|
|
|
import gradio as gr |
|
|
|
np.random.seed(5) |
|
|
|
|
|
def PCA_Pred(x1, x2, x3, x4): |
|
|
|
iris = datasets.load_iris() |
|
X = iris.data |
|
y = iris.target |
|
|
|
fig, ax = plt.subplots(1, subplot_kw={'projection': '3d', 'elev': 48, 'azim': 134}) |
|
ax.set_position([0, 0, 0.95, 1]) |
|
plt.cla() |
|
|
|
|
|
pca = decomposition.PCA(n_components=3) |
|
|
|
|
|
pca.fit(X) |
|
X = pca.transform(X) |
|
|
|
|
|
for name, label in [("Setosa", 0), ("Versicolour", 1), ("Virginica", 2)]: |
|
ax.text3D( |
|
X[y == label, 0].mean(), |
|
X[y == label, 1].mean() + 1.5, |
|
X[y == label, 2].mean(), |
|
name, |
|
horizontalalignment="center", |
|
bbox=dict(alpha=0.5, edgecolor="w", facecolor="w"), |
|
) |
|
|
|
y = np.choose(y, [1, 2, 0]).astype(float) |
|
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.nipy_spectral, edgecolor="k") |
|
|
|
user_iris_data = np.array([[x1, x2, x3, x4]], ndmin=2) |
|
|
|
|
|
pc_output = pca.transform(user_iris_data) |
|
ax.scatter(pc_output[0, 0], pc_output[0, 1], pc_output[0, 2], c='r', marker='*') |
|
|
|
ax.xaxis.set_ticklabels([]) |
|
ax.yaxis.set_ticklabels([]) |
|
ax.zaxis.set_ticklabels([]) |
|
|
|
return [pc_output, fig] |
|
|
|
title = "🌺 PCA example with Iris Data-set" |
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown( |
|
""" |
|
## The following app is a demo for PCA decomposition. It takes 4 dimensions as input, in reference \ |
|
to the Following image, and returns the transformed first 3 principal components (feature \ |
|
reduction) taken from a pre-trained model with Iris dataset. |
|
""") |
|
html = ( |
|
"<div >" |
|
"<img src='file/iris_dataset_info.png' alt='image one'>" |
|
+ "</div>" |
|
) |
|
gr.HTML(html) |
|
with gr.Row(): |
|
with gr.Column(): |
|
inp1 = gr.Slider(0, 7, value=1, step=0.1, label="Sepal Length (cm)") |
|
inp2 = gr.Slider(0, 5, value=1, step=0.1, label="Sepal Width (cm)") |
|
inp3 = gr.Slider(0, 7, value=1, step=0.1, label="Petal Length (cm)") |
|
inp4 = gr.Slider(0, 5, value=1, step=0.1, label="Petal Width (cm)") |
|
output = gr.Textbox(label="PCA Axes") |
|
with gr.Column(): |
|
plot = gr.Plot(label="PCA 3D Space") |
|
|
|
Reduction = gr.Button("PCA Transform") |
|
Reduction.click(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) |
|
demo.load(fn=PCA_Pred, inputs=[inp1, inp2, inp3, inp4], outputs=[output, plot]) |
|
|
|
demo.launch() |