File size: 4,478 Bytes
11a95b4
 
 
 
 
 
 
 
9f47792
11a95b4
 
 
 
 
 
 
 
 
 
9f47792
11a95b4
8780bfc
 
b1c07bb
8780bfc
9f47792
 
11a95b4
9f47792
 
 
ba335a6
 
 
 
 
9f47792
ba335a6
 
 
 
9f47792
b1c07bb
 
 
9f47792
b1c07bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11a95b4
b1c07bb
 
 
 
 
 
8780bfc
b1c07bb
9f47792
11a95b4
 
 
9f47792
11a95b4
 
ba335a6
 
 
 
 
11a95b4
9f47792
11a95b4
dc30bc9
 
8780bfc
11a95b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

import matplotlib.cm as cm
from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.linear_model import BayesianRidge

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
)

description = f"""
## Description

This demo computes a Bayesian Ridge Regression of Sinusoids.

In general, when fitting a curve with a polynomial by Bayesian ridge regression, the selection of initial values of the regularization parameters (alpha, lambda) may be important. This is because the regularization parameters are determined by an iterative procedure that depends on initial values.

In this demo, the sinusoid is approximated by a cubic polynomial using different pairs of initial values.  By evaluating log marginal likelihood (L) of these models, we can determine which one is better. It can be concluded that the model with larger L is more likely.

The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_bayesian_ridge_curvefit.html#sphx-glr-auto-examples-linear-model-plot-bayesian-ridge-curvefit-py)
"""

def func(x):
    return np.sin(2 * np.pi * x)

def curve_fit(size, alpha, lam):
    rng = np.random.RandomState(1234)
    x_train = rng.uniform(0.0, 1.0, size)
    y_train = func(x_train) + rng.normal(scale=0.1, size=size)
    x_test = np.linspace(0.0, 1.0, 100)

    n_order = 3
    X_train = np.vander(x_train, n_order + 1, increasing=True)
    X_test = np.vander(x_test, n_order + 1, increasing=True)
    reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)

    fig1, ax1 = plt.subplots(1, 1, figsize=(8, 4))
    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4))

    # Bayesian ridge regression with different initial value pairs
    init = [1 / np.var(y_train), 1.0]  # Default values
    reg.fit(X_train, y_train)
    ymean, ystd = reg.predict(X_test, return_std=True)
    
    ax1.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)")
    ax1.scatter(x_train, y_train, s=50, alpha=0.5, label="observation")
    ax1.plot(x_test, ymean, color="red", label="predict mean")
    ax1.fill_between(
        x_test, ymean - ystd, ymean + ystd, color="pink", alpha=0.5, label="predict std"
    )
    ax1.set_ylim(-1.3, 1.3)
    ax1.legend()
    title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(init[0], init[1])
    title += " (Default)"
    ax1.set_title(title, fontsize=12)
    text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format(
        reg.alpha_, reg.lambda_, reg.scores_[-1]
    )
    ax1.text(0.05, -1.0, text, fontsize=12)

    init = [alpha, lam]
    reg.set_params(alpha_init=init[0], lambda_init=init[1])
    reg.fit(X_train, y_train)
    ymean, ystd = reg.predict(X_test, return_std=True)

    ax2.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)")
    ax2.scatter(x_train, y_train, s=50, alpha=0.5, label="observation")
    ax2.plot(x_test, ymean, color="red", label="predict mean")
    ax2.fill_between(
        x_test, ymean - ystd, ymean + ystd, color="pink", alpha=0.5, label="predict std"
    )
    ax2.set_ylim(-1.3, 1.3)
    ax2.legend()
    title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(init[0], init[1])
    
    title += " (Chosen)"
    ax2.set_title(title, fontsize=12)
    text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format(
        reg.alpha_, reg.lambda_, reg.scores_[-1]
    )
    ax2.text(0.05, -1.0, text, fontsize=12)
    
    return fig1, fig2


with gr.Blocks(theme=theme) as demo:
    gr.Markdown('''
            <h1 style='text-align: center'>Curve Fitting with Bayesian Ridge Regression πŸ“ˆ</h1>
        ''')
    gr.Markdown(description)
    
    with gr.Row():
        size = gr.Slider(minimum=10, maximum=100, step=5, value=25, label="Number of Data Points")
        alpha = gr.Slider(minimum=1e-2, maximum=2, step=0.1, value=1, label="Initial Alpha")
        lam = gr.Slider(minimum=1e-5, maximum=1, step=1e-4, value=1e-3, label="Initial Lambda")
    with gr.Row():
        run_button = gr.Button('Fit the Curve')
    with gr.Row():
        plot_default = gr.Plot(label = 'Default Initialization')
        plot_chosen = gr.Plot(label = 'Chosen Initialization')
    run_button.click(fn=curve_fit, inputs=[size, alpha, lam], outputs=[plot_default, plot_chosen])

demo.launch()