Add Application file
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from time import time
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
from sklearn import manifold, datasets
|
8 |
+
from sklearn.cluster import AgglomerativeClustering
|
9 |
+
|
10 |
+
|
11 |
+
SEED = 0
|
12 |
+
digits = datasets.load_digits()
|
13 |
+
X, y = digits.data, digits.target
|
14 |
+
n_samples, n_features = X.shape
|
15 |
+
np.random.seed(SEED)
|
16 |
+
|
17 |
+
import matplotlib
|
18 |
+
matplotlib.use('Agg')
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def plot_clustering(linkage, dim):
|
23 |
+
if dim == '3D':
|
24 |
+
X_red = manifold.SpectralEmbedding(n_components=3).fit_transform(X)
|
25 |
+
else:
|
26 |
+
X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
|
27 |
+
|
28 |
+
clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)
|
29 |
+
|
30 |
+
t0 = time()
|
31 |
+
clustering.fit(X_red)
|
32 |
+
print("%s :\t%.2fs" % (linkage, time() - t0))
|
33 |
+
|
34 |
+
labels = clustering.labels_
|
35 |
+
|
36 |
+
x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
|
37 |
+
X_red = (X_red - x_min) / (x_max - x_min)
|
38 |
+
|
39 |
+
fig = go.Figure()
|
40 |
+
|
41 |
+
for digit in digits.target_names:
|
42 |
+
subset = X_red[y==digit]
|
43 |
+
rgbas = plt.cm.nipy_spectral(labels[y == digit]/10)
|
44 |
+
color = [f'rgba({rgba[0]}, {rgba[1]}, {rgba[2]}, 0.8)' for rgba in rgbas]
|
45 |
+
if dim == '2D':
|
46 |
+
fig.add_trace(go.Scatter(x=subset[:,0], y=subset[:,1], mode='text', text=str(digit), textfont={'size': 16, 'color': color}))
|
47 |
+
elif dim == '3D':
|
48 |
+
fig.add_trace(go.Scatter3d(x=subset[:,0], y=subset[:,1], z=subset[:,2], mode='text', text=str(digit), textfont={'size': 16, 'color': color}))
|
49 |
+
|
50 |
+
fig.update_traces(showlegend=False)
|
51 |
+
|
52 |
+
return fig
|
53 |
+
|
54 |
+
|
55 |
+
title = '# Agglomerative Clustering on MNIST'
|
56 |
+
|
57 |
+
description = """
|
58 |
+
An illustration of various linkage option for [agglomerative clustering](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html) on the digits dataset.
|
59 |
+
"""
|
60 |
+
|
61 |
+
author = '''
|
62 |
+
Created by [@Hnabil](https://huggingface.co/Hnabil) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html)
|
63 |
+
'''
|
64 |
+
|
65 |
+
with gr.Blocks(analytics_enabled=False, title=title) as demo:
|
66 |
+
gr.Markdown(title)
|
67 |
+
gr.Markdown(description)
|
68 |
+
gr.Markdown(author)
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
linkage = gr.Radio(["ward", "average", "complete", "single"], value="average", interactive=True, label="Linkage Method")
|
73 |
+
dim = gr.Radio(['2D', '3D'], label='Embedding Dimensionality', value='2D')
|
74 |
+
|
75 |
+
btn = gr.Button('Submit')
|
76 |
+
|
77 |
+
with gr.Column():
|
78 |
+
plot = gr.Plot(label='MNIST Embeddings')
|
79 |
+
|
80 |
+
btn.click(plot_clustering, inputs=[linkage, dim], outputs=[plot])
|
81 |
+
demo.load(plot_clustering, inputs=[linkage, dim], outputs=[plot])
|
82 |
+
|
83 |
+
demo.launch()
|