import gradio as gr import numpy as np import time import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", ) model_card = f""" ## Description **Incremental principal component analysis (IPCA)** is a suitable alternative to **Principal component analysis (PCA)** when the dataset to be analyzed is too large to fit in memory. **IPCA** generates a low-rank representation of the input data utilizing a fixed amount of memory that is not reliant on the number of input data samples. In this demo, you can play around with different ``number of components`` and ``number of samples`` to explore the performance of IPCA and PCA, including a comparison of their respective outputs and running times. **Note**: Incremental PCA is comparatively slower to regular PCA, as it processes partial data sets sequentially. ## Dataset Iris dataset """ iris = load_iris() X = iris.data y = iris.target def plot_pca(n_components, batch_size): # Create linkage matrix and then plot the dendrogram colors = ["navy", "turquoise", "darkorange"] ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) t1 = time.time() X_ipca = ipca.fit_transform(X) ipca_time = time.time() - t1 pca = PCA(n_components=n_components) t2 = time.time() X_pca = pca.fit_transform(X) pca_time = time.time() - t2 fig1, axes1 = plt.subplots() for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): axes1.scatter( X_ipca[y == i, 0], X_ipca[y == i, 1], color=color, lw=2, label=target_name, ) err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() axes1.set_title(f"Incremental PCA of iris dataset") axes1.axis([-4, 4, -1.5, 1.5]) axes1.legend(loc="best", shadow=False, scatterpoints=1) fig2, axes2 = plt.subplots() for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): axes2.scatter( X_pca[y == i, 0], X_pca[y == i, 1], color=color, lw=2, label=target_name, ) axes2.set_title("PCA of iris dataset") axes2.axis([-4, 4, -1.5, 1.5]) axes2.legend(loc="best", shadow=False, scatterpoints=1) text = f"PCA runing time: {pca_time:.6f} seconds. Incremental PCA runing time: {ipca_time:.6f} seconds. Mean absolute unsigned error: {err*100:.6f}%" return fig1, fig2, text with gr.Blocks(theme=theme) as demo: gr.Markdown('''

Incremental PCA

''') gr.Markdown(model_card) gr.Markdown("Author: Vu Minh Chien. Based on the example from scikit-learn") n_components = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of components to keep") batch_size = gr.Slider(minimum=10, maximum=50, step=10, value=10, label="The number of samples to use for each batch") with gr.Row(): with gr.Column(): plot_1 = gr.Plot(label="Incremental PCA") with gr.Column(): plot_2 = gr.Plot(label="PCA") with gr.Row(): resutls = gr.Textbox(label="Results") n_components.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) batch_size.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) demo.launch()