vumichien commited on
Commit
785be4a
·
1 Parent(s): 5941925

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import time
4
+ import matplotlib.pyplot as plt
5
+
6
+ from sklearn.datasets import load_iris
7
+ from sklearn.decomposition import PCA, IncrementalPCA
8
+
9
+
10
+ theme = gr.themes.Monochrome(
11
+ primary_hue="indigo",
12
+ secondary_hue="blue",
13
+ neutral_hue="slate",
14
+ )
15
+ model_card = f"""
16
+ ## Description
17
+
18
+ **Incremental principal component analysis (IPCA)** is a suitable alternative to **Principal component analysis (PCA)** when the dataset to be analyzed is too large to fit in memory.
19
+ **IPCA** generates a low-rank representation of the input data utilizing a fixed amount of memory that is not reliant on the number of input data samples.
20
+
21
+ In this demo, you can play around with different ``number of components`` and ``number of samples`` to explore the performance of IPCA and PCA, including a comparison of their respective outputs and running times.
22
+ **Note**: Incremental PCA is comparatively slower to regular PCA, as it processes partial data sets sequentially.
23
+
24
+
25
+ ## Dataset
26
+
27
+ Iris dataset
28
+ """
29
+ iris = load_iris()
30
+ X = iris.data
31
+ y = iris.target
32
+
33
+ def plot_pca(n_components, batch_size):
34
+ # Create linkage matrix and then plot the dendrogram
35
+ colors = ["navy", "turquoise", "darkorange"]
36
+
37
+ ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size)
38
+ t1 = time.time()
39
+ X_ipca = ipca.fit_transform(X)
40
+ ipca_time = time.time() - t1
41
+
42
+ pca = PCA(n_components=n_components)
43
+ t2 = time.time()
44
+ X_pca = pca.fit_transform(X)
45
+ pca_time = time.time() - t2
46
+
47
+ fig1, axes1 = plt.subplots()
48
+ for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names):
49
+ axes1.scatter(
50
+ X_ipca[y == i, 0],
51
+ X_ipca[y == i, 1],
52
+ color=color,
53
+ lw=2,
54
+ label=target_name,
55
+ )
56
+ err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
57
+ axes1.set_title(f"Incremental PCA of iris dataset")
58
+ axes1.axis([-4, 4, -1.5, 1.5])
59
+ axes1.legend(loc="best", shadow=False, scatterpoints=1)
60
+
61
+ fig2, axes2 = plt.subplots()
62
+ for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names):
63
+ axes2.scatter(
64
+ X_pca[y == i, 0],
65
+ X_pca[y == i, 1],
66
+ color=color,
67
+ lw=2,
68
+ label=target_name,
69
+ )
70
+ axes2.set_title("PCA of iris dataset")
71
+ axes2.axis([-4, 4, -1.5, 1.5])
72
+ axes2.legend(loc="best", shadow=False, scatterpoints=1)
73
+
74
+ text = f"PCA runing time : {pca_time:.6f} seconds. Incremental PCA runing time : {ipca_time:.6f} seconds. Mean absolute unsigned error {err*100:.6f}%"
75
+
76
+ return fig1, fig2, text
77
+
78
+
79
+
80
+ with gr.Blocks(theme=theme) as demo:
81
+ gr.Markdown('''
82
+ <div>
83
+ <h1 style='text-align: center'>Incremental PCA</h1>
84
+ </div>
85
+ ''')
86
+ gr.Markdown(model_card)
87
+ gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html#sphx-glr-auto-examples-decomposition-plot-incremental-pca-py\">scikit-learn</a>")
88
+ n_components = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of components to keep")
89
+ batch_size = gr.Slider(minimum=10, maximum=50, step=10, value=10, label="The number of samples to use for each batch")
90
+
91
+ with gr.Row():
92
+ with gr.Column():
93
+ plot_1 = gr.Plot(label="Incremental PCA")
94
+ with gr.Column():
95
+ plot_2 = gr.Plot(label="PCA")
96
+ with gr.Row():
97
+ resutls = gr.Textbox(label="Results")
98
+
99
+ n_components.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls])
100
+ batch_size.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls])
101
+
102
+ demo.launch()