Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import time | |
import matplotlib.pyplot as plt | |
from sklearn.datasets import load_iris | |
from sklearn.decomposition import PCA, IncrementalPCA | |
theme = gr.themes.Monochrome( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
) | |
model_card = f""" | |
## Description | |
**Incremental principal component analysis (IPCA)** is a suitable alternative to **Principal component analysis (PCA)** when the dataset to be analyzed is too large to fit in memory. | |
**IPCA** generates a low-rank representation of the input data utilizing a fixed amount of memory that is not reliant on the number of input data samples. | |
In this demo, you can play around with different ``number of components`` and ``number of samples`` to explore the performance of IPCA and PCA, including a comparison of their respective outputs and running times. | |
**Note**: Incremental PCA is comparatively slower to regular PCA, as it processes partial data sets sequentially. | |
## Dataset | |
Iris dataset | |
""" | |
iris = load_iris() | |
X = iris.data | |
y = iris.target | |
def plot_pca(n_components, batch_size): | |
# Create linkage matrix and then plot the dendrogram | |
colors = ["navy", "turquoise", "darkorange"] | |
ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) | |
t1 = time.time() | |
X_ipca = ipca.fit_transform(X) | |
ipca_time = time.time() - t1 | |
pca = PCA(n_components=n_components) | |
t2 = time.time() | |
X_pca = pca.fit_transform(X) | |
pca_time = time.time() - t2 | |
fig1, axes1 = plt.subplots() | |
for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): | |
axes1.scatter( | |
X_ipca[y == i, 0], | |
X_ipca[y == i, 1], | |
color=color, | |
lw=2, | |
label=target_name, | |
) | |
err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() | |
axes1.set_title(f"Incremental PCA of iris dataset") | |
axes1.axis([-4, 4, -1.5, 1.5]) | |
axes1.legend(loc="best", shadow=False, scatterpoints=1) | |
fig2, axes2 = plt.subplots() | |
for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): | |
axes2.scatter( | |
X_pca[y == i, 0], | |
X_pca[y == i, 1], | |
color=color, | |
lw=2, | |
label=target_name, | |
) | |
axes2.set_title("PCA of iris dataset") | |
axes2.axis([-4, 4, -1.5, 1.5]) | |
axes2.legend(loc="best", shadow=False, scatterpoints=1) | |
text = f"PCA runing time: {pca_time:.6f} seconds. Incremental PCA runing time: {ipca_time:.6f} seconds. Mean absolute unsigned error: {err*100:.6f}%" | |
return fig1, fig2, text | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Incremental PCA</h1> | |
</div> | |
''') | |
gr.Markdown(model_card) | |
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/decomposition/plot_incremental_pca.html#sphx-glr-auto-examples-decomposition-plot-incremental-pca-py\">scikit-learn</a>") | |
n_components = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of components to keep") | |
batch_size = gr.Slider(minimum=10, maximum=50, step=10, value=10, label="The number of samples to use for each batch") | |
with gr.Row(): | |
with gr.Column(): | |
plot_1 = gr.Plot(label="Incremental PCA") | |
with gr.Column(): | |
plot_2 = gr.Plot(label="PCA") | |
with gr.Row(): | |
resutls = gr.Textbox(label="Results") | |
n_components.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) | |
batch_size.change(fn=plot_pca, inputs=[n_components, batch_size], outputs=[plot_1, plot_2, resutls]) | |
demo.launch() |