Commit
·
e757838
1
Parent(s):
db42b5d
Utilities to run app
Browse files
utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from sklearn.base import ClassifierMixin
|
7 |
+
from sklearn.pipeline import make_pipeline
|
8 |
+
from sklearn.metrics import roc_curve, auc
|
9 |
+
from sklearn.datasets import make_classification
|
10 |
+
from sklearn.linear_model import LogisticRegression
|
11 |
+
from sklearn.model_selection import train_test_split
|
12 |
+
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder
|
13 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, RandomTreesEmbedding
|
14 |
+
|
15 |
+
|
16 |
+
def create_and_split_dataset(n_samples: int) -> list[tuple[np.ndarray, np.array]]:
|
17 |
+
# Create Data
|
18 |
+
X, y = make_classification(n_samples=n_samples, random_state=10)
|
19 |
+
|
20 |
+
# Split Data
|
21 |
+
X_full_train, X_test, y_full_train, y_test = train_test_split(
|
22 |
+
X, y, test_size=0.5, random_state=10
|
23 |
+
)
|
24 |
+
|
25 |
+
# Split Data for Ensemble and Linear Model
|
26 |
+
X_train_ensemble, X_train_linear, y_train_ensemble, y_train_linear = train_test_split(
|
27 |
+
X_full_train, y_full_train, test_size=0.5, random_state=10
|
28 |
+
)
|
29 |
+
|
30 |
+
return (X_train_ensemble, y_train_ensemble), (X_train_linear, y_train_linear), (X_test, y_test)
|
31 |
+
|
32 |
+
def rf_apply(X, model):
|
33 |
+
return model.apply(X)
|
34 |
+
|
35 |
+
def gbdt_apply(X, model):
|
36 |
+
return model.apply(X)[:, :, 0]
|
37 |
+
|
38 |
+
def plot_roc(X: np.ndarray, y:np.array, models: tuple[str, ClassifierMixin]):
|
39 |
+
fig = go.Figure()
|
40 |
+
|
41 |
+
fig.add_shape(
|
42 |
+
type='line', line=dict(dash='dash'),
|
43 |
+
x0=0, x1=1, y0=0, y1=1
|
44 |
+
)
|
45 |
+
|
46 |
+
for model_name, model in models:
|
47 |
+
y_score = model.predict_proba(X)[:, 1]
|
48 |
+
fpr, tpr, _ = roc_curve(y, y_score)
|
49 |
+
auc_val = auc(fpr, tpr)
|
50 |
+
name = f"{model_name} (AUC={auc_val:.4f})"
|
51 |
+
fig.add_trace(go.Scatter(x=fpr, y=tpr, name=name, mode='lines'))
|
52 |
+
|
53 |
+
fig.update_layout(
|
54 |
+
title="Model ROC Curve Comparison",
|
55 |
+
xaxis_title='False Positive Rate',
|
56 |
+
yaxis_title='True Positive Rate',
|
57 |
+
width=1000, height=600
|
58 |
+
)
|
59 |
+
|
60 |
+
return fig
|