EduardoPacheco commited on
Commit
89da9e7
·
1 Parent(s): 239a99b

Suggested modifications

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -80,6 +80,8 @@ with gr.Blocks(title=title) as demo:
80
  on a synthetic dataset. The transformations are then used to train a linear model on the \
81
  transformed data. The plot shows the ROC curve of the different models trained on the \
82
  transformed data. The plot is interactive and you can zoom in and out.
 
 
83
  """
84
  )
85
 
@@ -88,10 +90,10 @@ with gr.Blocks(title=title) as demo:
88
  n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000)
89
  n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10)
90
  max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3)
 
91
  plot = gr.Plot(label="ROC Curve")
92
 
93
- Reduction = gr.Button("Run")
94
- Reduction.click(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
95
  demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
96
 
97
  demo.launch()
 
80
  on a synthetic dataset. The transformations are then used to train a linear model on the \
81
  transformed data. The plot shows the ROC curve of the different models trained on the \
82
  transformed data. The plot is interactive and you can zoom in and out.
83
+
84
+ [Original Example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_feature_transformation.html#sphx-glr-auto-examples-ensemble-plot-feature-transformation-py)
85
  """
86
  )
87
 
 
90
  n_samples = gr.inputs.Slider(50_000, 100_000, 1000, label="Number of Samples", default=80_000)
91
  n_estimators = gr.inputs.Slider(10, 100, 10, label="Number of Estimators", default=10)
92
  max_depth = gr.inputs.Slider(1, 10, 1, label="Max Depth", default=3)
93
+ btn = gr.Button("Run")
94
  plot = gr.Plot(label="ROC Curve")
95
 
96
+ btn.click(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
 
97
  demo.load(fn=app_fn, inputs=[n_samples, n_estimators, max_depth], outputs=[plot])
98
 
99
  demo.launch()