Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=======================================================================================
|
3 |
+
Gradio demo to plot the decision surface of decision trees trained on the iris dataset
|
4 |
+
=======================================================================================
|
5 |
+
|
6 |
+
Plot the decision surface of a decision tree trained on pairs
|
7 |
+
of features of the iris dataset.
|
8 |
+
|
9 |
+
For each pair of iris features, the decision tree learns decision
|
10 |
+
boundaries made of combinations of simple thresholding rules inferred from
|
11 |
+
the training samples.
|
12 |
+
|
13 |
+
We also show the tree structure of a model built on all of the features.
|
14 |
+
|
15 |
+
Gradio demo created by Syed Affan <saffand03@gmail.com>
|
16 |
+
"""
|
17 |
+
from sklearn.datasets import load_iris
|
18 |
+
from sklearn.tree import plot_tree
|
19 |
+
import numpy as np
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import gradio as gr
|
22 |
+
from sklearn.tree import DecisionTreeClassifier
|
23 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
24 |
+
|
25 |
+
|
26 |
+
iris = load_iris()
|
27 |
+
|
28 |
+
def make_plot(criterion,max_depth,ccp_alpha):
|
29 |
+
# Parameters
|
30 |
+
n_classes = 3
|
31 |
+
plot_colors = "ryb"
|
32 |
+
plot_step = 0.02
|
33 |
+
|
34 |
+
fig_1 = plt.figure()
|
35 |
+
|
36 |
+
for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]):
|
37 |
+
# We only take the two corresponding features
|
38 |
+
X = iris.data[:, pair]
|
39 |
+
y = iris.target
|
40 |
+
|
41 |
+
# Train
|
42 |
+
clf = DecisionTreeClassifier(criterion=criterion,max_depth=max_depth,ccp_alpha=ccp_alpha)
|
43 |
+
clf.fit(X, y)
|
44 |
+
|
45 |
+
# Plot the decision boundary
|
46 |
+
ax = plt.subplot(2, 3, pairidx + 1)
|
47 |
+
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
|
48 |
+
DecisionBoundaryDisplay.from_estimator(
|
49 |
+
clf,
|
50 |
+
X,
|
51 |
+
cmap=plt.cm.RdYlBu,
|
52 |
+
response_method="predict",
|
53 |
+
ax=ax,
|
54 |
+
xlabel=iris.feature_names[pair[0]],
|
55 |
+
ylabel=iris.feature_names[pair[1]],
|
56 |
+
)
|
57 |
+
|
58 |
+
# Plot the training points
|
59 |
+
for i, color in zip(range(n_classes), plot_colors):
|
60 |
+
idx = np.where(y == i)
|
61 |
+
plt.scatter(
|
62 |
+
X[idx, 0],
|
63 |
+
X[idx, 1],
|
64 |
+
c=color,
|
65 |
+
label=iris.target_names[i],
|
66 |
+
cmap=plt.cm.RdYlBu,
|
67 |
+
edgecolor="black",
|
68 |
+
s=15,
|
69 |
+
)
|
70 |
+
|
71 |
+
plt.suptitle("Decision surface of decision trees trained on pairs of features")
|
72 |
+
plt.legend(loc="lower right", borderpad=0, handletextpad=0)
|
73 |
+
_ = plt.axis("tight")
|
74 |
+
|
75 |
+
# %%
|
76 |
+
# Display the structure of a single decision tree trained on all the features
|
77 |
+
# together.
|
78 |
+
|
79 |
+
fig_2 = plt.figure()
|
80 |
+
clf = DecisionTreeClassifier(criterion=criterion,max_depth=max_depth,ccp_alpha=ccp_alpha).fit(iris.data, iris.target)
|
81 |
+
plot_tree(clf, filled=True)
|
82 |
+
plt.title("Decision tree trained on all the iris features")
|
83 |
+
return fig_1,fig_2
|
84 |
+
|
85 |
+
title = 'Plot the decision surface of decision trees trained on the iris dataset'
|
86 |
+
|
87 |
+
model_card = f"""
|
88 |
+
## Description:
|
89 |
+
Plot the decision surface of a decision tree trained on pairs of features of the iris dataset.
|
90 |
+
For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding rules inferred from the training samples.
|
91 |
+
We also show the tree structure of a model built on all of the features.
|
92 |
+
## Dataset
|
93 |
+
Iris Dataset
|
94 |
+
"""
|
95 |
+
|
96 |
+
with gr.Blocks(title=title) as demo:
|
97 |
+
gr.Markdown('''
|
98 |
+
<div>
|
99 |
+
<h1 style='text-align: center'>⚒ Plot the decision surface of decision trees trained on the iris dataset 🛠</h1>
|
100 |
+
</div>
|
101 |
+
''')
|
102 |
+
gr.Markdown(model_card)
|
103 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/sulpha\">sulpha</a>")
|
104 |
+
with gr.Column():
|
105 |
+
d0 = gr.Radio(['gini', 'entropy', 'log_loss'],value='gini',label='Criterion')
|
106 |
+
d1 = gr.Slider(1,10,step=1,value=5,label = 'max_depth')
|
107 |
+
d2 = gr.Slider(0.0,1,step=0.001,value=0.0,label = 'ccp_alpha')
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
p_1 = gr.Plot()
|
111 |
+
p_2 = gr.Plot()
|
112 |
+
|
113 |
+
btn = gr.Button(value= 'Submit')
|
114 |
+
btn.click(make_plot,inputs=[d0,d1,d2],outputs=[p_1,p_2])
|
115 |
+
|
116 |
+
demo.launch()
|