Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from sklearn.datasets import make_blobs
|
5 |
+
import time
|
6 |
+
from sklearn.cluster import KMeans, MiniBatchKMeans
|
7 |
+
from sklearn.metrics.pairwise import pairwise_distances_argmin
|
8 |
+
|
9 |
+
theme = gr.themes.Monochrome(
|
10 |
+
primary_hue="indigo",
|
11 |
+
secondary_hue="blue",
|
12 |
+
neutral_hue="slate",
|
13 |
+
)
|
14 |
+
model_card = f"""
|
15 |
+
## Description
|
16 |
+
|
17 |
+
This demo compares the performance of the **MiniBatchKMeans** and **KMeans**. The MiniBatchKMeans is faster, but gives slightly different results.
|
18 |
+
The points that are labelled differently between the two algorithms are also plotted.
|
19 |
+
You can play around with different ``number of samples`` and ``number of mini batch size`` to see the effect
|
20 |
+
|
21 |
+
## Dataset
|
22 |
+
|
23 |
+
Simulation dataset
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
def do_train(n_samples, batch_size):
|
28 |
+
|
29 |
+
np.random.seed(0)
|
30 |
+
|
31 |
+
centers = np.random.rand(3, 2)
|
32 |
+
n_clusters = len(centers)
|
33 |
+
X, labels_true = make_blobs(n_samples=n_samples, centers=centers, cluster_std=0.7)
|
34 |
+
|
35 |
+
k_means = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10)
|
36 |
+
t0 = time.time()
|
37 |
+
k_means.fit(X)
|
38 |
+
t_batch = time.time() - t0
|
39 |
+
|
40 |
+
|
41 |
+
mbk = MiniBatchKMeans(
|
42 |
+
init="k-means++",
|
43 |
+
n_clusters=n_clusters,
|
44 |
+
batch_size=batch_size,
|
45 |
+
n_init=10,
|
46 |
+
max_no_improvement=10,
|
47 |
+
verbose=0,
|
48 |
+
)
|
49 |
+
t0 = time.time()
|
50 |
+
mbk.fit(X)
|
51 |
+
t_mini_batch = time.time() - t0
|
52 |
+
|
53 |
+
|
54 |
+
k_means_cluster_centers = k_means.cluster_centers_
|
55 |
+
order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_)
|
56 |
+
mbk_means_cluster_centers = mbk.cluster_centers_[order]
|
57 |
+
|
58 |
+
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
|
59 |
+
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)
|
60 |
+
|
61 |
+
|
62 |
+
colors = ["#4EACC5", "#FF9C34", "#4E9A06"]
|
63 |
+
|
64 |
+
# KMeans
|
65 |
+
fig1, axes1 = plt.subplots()
|
66 |
+
for k, col in zip(range(n_clusters), colors):
|
67 |
+
my_members = k_means_labels == k
|
68 |
+
cluster_center = k_means_cluster_centers[k]
|
69 |
+
axes1.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15)
|
70 |
+
axes1.plot(
|
71 |
+
cluster_center[0],
|
72 |
+
cluster_center[1],
|
73 |
+
"o",
|
74 |
+
markerfacecolor=col,
|
75 |
+
markeredgecolor="k",
|
76 |
+
markersize=12,
|
77 |
+
)
|
78 |
+
axes1.set_title("KMeans")
|
79 |
+
axes1.set_xticks(())
|
80 |
+
axes1.set_yticks(())
|
81 |
+
|
82 |
+
# MiniBatchKMeans
|
83 |
+
fig2, axes2 = plt.subplots()
|
84 |
+
for k, col in zip(range(n_clusters), colors):
|
85 |
+
my_members = mbk_means_labels == k
|
86 |
+
cluster_center = mbk_means_cluster_centers[k]
|
87 |
+
axes2.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15)
|
88 |
+
axes2.plot(
|
89 |
+
cluster_center[0],
|
90 |
+
cluster_center[1],
|
91 |
+
"o",
|
92 |
+
markerfacecolor=col,
|
93 |
+
markeredgecolor="k",
|
94 |
+
markersize=12,
|
95 |
+
)
|
96 |
+
axes2.set_title("MiniBatchKMeans")
|
97 |
+
axes2.set_xticks(())
|
98 |
+
axes2.set_yticks(())
|
99 |
+
|
100 |
+
# Initialize the different array to all False
|
101 |
+
different = mbk_means_labels == 4
|
102 |
+
fig3, axes3 = plt.subplots()
|
103 |
+
|
104 |
+
for k in range(n_clusters):
|
105 |
+
different += (k_means_labels == k) != (mbk_means_labels == k)
|
106 |
+
|
107 |
+
identic = np.logical_not(different)
|
108 |
+
axes3.plot(X[identic, 0], X[identic, 1], "w", markerfacecolor="#bbbbbb", marker=".", markersize=15)
|
109 |
+
axes3.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".", markersize=15)
|
110 |
+
axes3.set_title("Difference")
|
111 |
+
axes3.set_xticks(())
|
112 |
+
axes3.set_yticks(())
|
113 |
+
text = f"KMeans Train time: {t_batch:.2f}s Inertia: {k_means.inertia_:.4f}. MiniBatchKMeans Train time: {t_mini_batch:.2f}s Inertia: {mbk.inertia_:.4f}"
|
114 |
+
plt.close()
|
115 |
+
return fig1, fig2, fig3, text
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
with gr.Blocks(theme=theme) as demo:
|
120 |
+
gr.Markdown('''
|
121 |
+
<div>
|
122 |
+
<h1 style='text-align: center'>Comparison of the K-Means and MiniBatchKMeans clustering algorithms</h1>
|
123 |
+
</div>
|
124 |
+
''')
|
125 |
+
gr.Markdown(model_card)
|
126 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html#sphx-glr-auto-examples-cluster-plot-mini-batch-kmeans-py\">scikit-learn</a>")
|
127 |
+
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples")
|
128 |
+
batch_size = gr.Slider(minimum=50, maximum=500, step=50, value=50, label="Size of the mini batches")
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
plot1 = gr.Plot(label="KMeans")
|
132 |
+
with gr.Column():
|
133 |
+
plot2 = gr.Plot(label="MiniBatchKMeans")
|
134 |
+
with gr.Column():
|
135 |
+
plot3 = gr.Plot(label="Difference")
|
136 |
+
with gr.Row():
|
137 |
+
results = gr.Textbox(label="Results")
|
138 |
+
|
139 |
+
n_samples.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results])
|
140 |
+
batch_size.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results])
|
141 |
+
|
142 |
+
demo.launch()
|